메뉴 건너뛰기




Volumn 10, Issue 6, 2013, Pages 1547-1551

Semisupervised dimensionality reduction of hyperspectral images via local scaling cut criterion

Author keywords

Dimensionality reduction; hyperspectral image (HSI) classification; scaling cut (SC); semisupervised learning

Indexed keywords

DIMENSIONALITY REDUCTION; DIMENSIONALITY REDUCTION METHOD; HIGH DIMENSIONAL DATA; HYPERSPECTRAL IMAGES; LINEAR DISCRIMINANT ANALYSIS; LOW-DIMENSIONAL REPRESENTATION; SCALING CUT (SC); SEMI- SUPERVISED LEARNING;

EID: 84886588953     PISSN: 1545598X     EISSN: None     Source Type: Journal    
DOI: 10.1109/LGRS.2013.2261797     Document Type: Article
Times cited : (46)

References (24)
  • 1
    • 67949115614 scopus 로고    scopus 로고
    • Spectral spatial classification of hyperspectral imagery based on partitional clustering techniques
    • Aug.
    • Y. Tarabalka, J. A. Benediktsson, and J. Chanussot, "Spectral spatial classification of hyperspectral imagery based on partitional clustering techniques," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2973-2987, Aug. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.8 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3
  • 3
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Sep.
    • R. A. Fisher, "The use of multiple measurements in taxonomic problems," Ann. Eugen., vol. 7, no. 2, pp. 179-188, Sep. 1936.
    • (1936) Ann. Eugen. , vol.7 , Issue.2 , pp. 179-188
    • Fisher, R.A.1
  • 4
    • 10944229264 scopus 로고    scopus 로고
    • Kernel principal component analysis
    • B. Scholkopf, A. Smola, and K. Muller, "Kernel principal component analysis," Neural Comput., no. 10, pp. 1299-1319, 1999.
    • (1999) Neural Comput. , Issue.10 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.3
  • 6
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • DOI 10.1162/089976603321780317
    • M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," Neural Comput., vol. 15, no. 6, pp. 1373-1396, Jun. 2003. (Pubitemid 37049796)
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 8
    • 84880013884 scopus 로고    scopus 로고
    • Adaptive multi-parameter spectral feature analysis for SAR target recognition
    • Aug.
    • X. Zhang, L. C. Jiao, S. Zhou, and N. Zhou, "Adaptive multi-parameter spectral feature analysis for SAR target recognition," Opt. Eng., vol. 51, no. 8, p. 087203, Aug. 2012.
    • (2012) Opt. Eng. , vol.51 , Issue.8 , pp. 087203
    • Zhang, X.1    Jiao, L.C.2    Zhou, S.3    Zhou, N.4
  • 9
    • 66749175769 scopus 로고    scopus 로고
    • Kernel principal component analysis for the classification of hyperspectral remote-sensing data over urban areas
    • M. Fauvel, J. Chanussot, and J. A. Benediktsson, "Kernel principal component analysis for the classification of hyperspectral remote-sensing data over urban areas," in Proc. EURASIP J. Adv. Signal Process., 2009, vol. 2009, pp. 1-14.
    • (2009) Proc. EURASIP J. Adv. Signal Process. , vol.2009 , pp. 1-14
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3
  • 10
    • 80052364092 scopus 로고    scopus 로고
    • Locality preserving projections algorithms for hyperspectral image dimensionality reduction
    • Shanghai, China, Jun.
    • Z. Wang and B. He, "Locality preserving projections algorithms for hyperspectral image dimensionality reduction," in Proc. Conf. Geoinformat., Shanghai, China, Jun. 2011, pp. 1-4.
    • (2011) Proc. Conf. Geoinformat. , pp. 1-4
    • Wang, Z.1    He, B.2
  • 11
    • 0141682413 scopus 로고    scopus 로고
    • Mapping nonnative plants using hyperspectral imagery
    • DOI 10.1016/S0034-4257(03)00096-8
    • E. Underwood, S. Ustin, and D. DiPietro, "Mapping nonnative plants using hyperspectral imagery," Remote Sens. Environ., vol. 86, no. 2, pp. 150-161, Jul. 2003. (Pubitemid 37143210)
    • (2003) Remote Sensing of Environment , vol.86 , Issue.2 , pp. 150-161
    • Underwood, E.1    Ustin, S.2    DiPietro, D.3
  • 12
    • 61349199062 scopus 로고    scopus 로고
    • Classification of hyperspectral images with regularized linear discriminant analysis
    • Mar.
    • T. V. Bandos, L. Bruzzone, and G. Camps-Valls, "Classification of hyperspectral images with regularized linear discriminant analysis," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 3, pp. 862-873, Mar. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.3 , pp. 862-873
    • Bandos, T.V.1    Bruzzone, L.2    Camps-Valls, G.3
  • 13
    • 2642530204 scopus 로고    scopus 로고
    • Nonparametric weighted feature extraction for classification
    • May
    • B.-C. Kuo and D. A. Landgrebe, "Nonparametric weighted feature extraction for classification," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 5, pp. 1096-1105, May 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.5 , pp. 1096-1105
    • Kuo, B.-C.1    Landgrebe, D.A.2
  • 14
    • 44649132677 scopus 로고    scopus 로고
    • A unified framework for semi-supervised dimensionality reduction
    • Sep.
    • Y. Song, F. Nie, and C. Zhang, "A unified framework for semi-supervised dimensionality reduction," Pattern Recognit., vol. 41, no. 9, pp. 2789-2799, Sep. 2008.
    • (2008) Pattern Recognit. , vol.41 , Issue.9 , pp. 2789-2799
    • Song, Y.1    Nie, F.2    Zhang, C.3
  • 15
    • 41549147912 scopus 로고    scopus 로고
    • An active learning approach to hyperspectral data classification
    • DOI 10.1109/TGRS.2007.910220, 4469868
    • S. Rajan, J. Ghosh, and M. M. Crawford, "An active learning approach to hyperspectral data classification," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 4, pp. 1231-1242, Apr. 2008. (Pubitemid 351459470)
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.4 , pp. 1231-1242
    • Rajan, S.1    Ghosh, J.2    Crawford, M.M.3
  • 16
    • 47849095828 scopus 로고    scopus 로고
    • Semisupervised image classification with Laplacian support vector machines
    • Jul.
    • L. Gomez-Chova, G. Camps-Valls, and J. Munoz-Mari, "Semisupervised image classification with Laplacian support vector machines," IEEE Geosci. Remote Sens. Lett., vol. 5, no. 3, pp. 336-340, Jul. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.3 , pp. 336-340
    • Gomez-Chova, L.1    Camps-Valls, G.2    Munoz-Mari, J.3
  • 18
    • 39049145967 scopus 로고    scopus 로고
    • Semi-supervised graph-based hyperspectral image classification
    • Oct.
    • G. Camps-Valls, T. Bandos Marsheva, and D. Zhou, "Semi-supervised graph-based hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 10, pp. 3044-3054, Oct. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.10 , pp. 3044-3054
    • Camps-Valls, G.1    Bandos Marsheva, T.2    Zhou, D.3
  • 19
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis
    • M. Sugiyama, "Dimensionality reduction of multi-modal labeled data by local Fisher discriminant analysis," J. Mach. Learn. Res., vol. 8, pp. 1027-1061, May 2007. (Pubitemid 46798409)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1027-1061
    • Sugiyama, M.1
  • 20
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • Aug.
    • J. Shi and J. Malik, "Normalized cuts and image segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888-905, Aug. 2000.
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , Issue.8 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 21
    • 79952022416 scopus 로고    scopus 로고
    • Semisupervised dimensionality reduction with pairwise constraints for hyperspectral image classification
    • Mar.
    • S. Chen and D. Zhang, "Semisupervised dimensionality reduction with pairwise constraints for hyperspectral image classification," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 2, pp. 369-373, Mar. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.2 , pp. 369-373
    • Chen, S.1    Zhang, D.2
  • 22
    • 77952518276 scopus 로고    scopus 로고
    • A unified semi-supervised dimensionality reduction framework for manifold learning
    • Jun.
    • R. Chatpatanasiri and B. Kijsirikul, "A unified semi-supervised dimensionality reduction framework for manifold learning," Neurocomputing, vol. 73, no. 10-12, pp. 1631-1640, Jun. 2010.
    • (2010) Neurocomputing , vol.73 , Issue.10-12 , pp. 1631-1640
    • Chatpatanasiri, R.1    Kijsirikul, B.2
  • 23
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani, "Manifold regularization: A geometric framework for learning from labeled and unlabeled examples," J. Mach. Learn. Res., vol. 7, pp. 2399-2434, Dec. 2006. (Pubitemid 44708005)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 24
    • 67651160364 scopus 로고    scopus 로고
    • Dimensionality reduction of hyperspectral data via spectral feature extraction
    • Jul.
    • B. Mojaradi, H. Abrishami-Moghaddam, and M. J. V. Zoej, "Dimensionality reduction of hyperspectral data via spectral feature extraction," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 7, pp. 2091-2105, Jul. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.7 , pp. 2091-2105
    • Mojaradi, B.1    Abrishami-Moghaddam, H.2    Zoej, M.J.V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.