메뉴 건너뛰기




Volumn 6, Issue 2, 2013, Pages 792-800

Non-uniform random feature selection and kernel density scoring with SVM based ensemble classification for hyperspectral image analysis

Author keywords

Ground cover classification; hyperspectral imagery (HSI); multi classifier systems (MCSs); random feature selection (RFS); support vector machines (SVMs)

Indexed keywords

GROUND COVERS; HYPERSPECTRAL IMAGERY; MULTICLASSIFIER SYSTEM; RANDOM FEATURES; SUPPORT VECTOR MACHINE (SVMS);

EID: 84877927185     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2013.2237757     Document Type: Article
Times cited : (21)

References (38)
  • 1
    • 0034546236 scopus 로고    scopus 로고
    • Comparison of Gaussian mixture and linear mixture models for classification of hyperspectral data
    • S. G. Beaven,D. Stein, and L. E. Hoff, "Comparison of Gaussian mixture and linear mixture models for classification of hyperspectral data," in Proc. IEEE IGARSS, 2000, vol. 4, pp. 1597-1599.
    • Proc. IEEE IGARSS, 2000 , vol.4 , pp. 1597-1599
    • Beaven, S.G.1    Stein, D.2    Hoff, L.E.3
  • 2
    • 70350431903 scopus 로고    scopus 로고
    • Increasing hyperspectral image classification accuracy for data sets with limited training samples by sample interpolation
    • B. Demir and S. Erturk, "Increasing hyperspectral image classification accuracy for data sets with limited training samples by sample interpolation," in Proc. 4th Int. Conf. Recent Advances in Space Technologies, 2009, 2009, pp. 367-369.
    • (2009) Proc. 4th Int. Conf. Recent Advances in Space Technologies, 2009 , pp. 367-369
    • Demir, B.1    Erturk, S.2
  • 3
    • 0035694667 scopus 로고    scopus 로고
    • An adaptive classifier design for high-dimensional data analysis with a limited training data set
    • DOI 10.1109/36.975001, PII S0196289201108776
    • Q. Jackson and D. A. Landgrebe, "An adaptive classifier design for high-dimensional data analysis with a limited training data set," IEEE Trans. Geosci. Remote Sens. , vol. 39, pp. 2664-2679, Dec. 2001. (Pubitemid 34091845)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.12 , pp. 2664-2679
    • Jackson, Q.1    Landgrebe, D.A.2
  • 4
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens. , vol. 42, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 6
    • 66549121153 scopus 로고    scopus 로고
    • A robust multi-classifier decision fusion framework for hyperspectral, multi-temporal classification
    • S. Prasad and L. M. Bruce, "A robust multi-classifier decision fusion framework for hyperspectral, multi-temporal classification," in Proc. IEEE IGARSS 2008, pp. II-273-II-276.
    • Proc. IEEE IGARSS 2008
    • Prasad, S.1    Bruce, L.M.2
  • 8
    • 70350294122 scopus 로고    scopus 로고
    • Ensemble classification algorithm for hyperspectral remote sensing data
    • Oct
    • C. Mingmin, K. Qian, J. A. Benediktsson, and R. Feng, "Ensemble classification algorithm for hyperspectral remote sensing data," IEEE Geosci. Remote Sens. Lett. , vol. 6, pp. 762-766, Oct. 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett , vol.6 , pp. 762-766
    • Mingmin, C.1    Qian, K.2    Benediktsson, J.A.3    Feng, R.4
  • 9
    • 80053576495 scopus 로고    scopus 로고
    • Creating and measuring diversity in multiple classifier systems using support vector data description
    • Dec
    • M. S. Haghighi, A. Vahedian, and H. S. Yazdi, "Creating and measuring diversity in multiple classifier systems using support vector data description," Elsevier Applied Soft Computing, vol. 11, pp. 4941-4942, Dec. 2011.
    • (2011) Elsevier Applied Soft Computing , vol.11 , pp. 4941-4942
    • Haghighi, M.S.1    Vahedian, A.2    Yazdi, H.S.3
  • 11
  • 12
    • 77953871614 scopus 로고    scopus 로고
    • Sensitivity of support vector machines to random feature selection in classification of hyperspectral data
    • Jul
    • B. Waske, S. van der Linden, J. A. Benediksson, A. Rabe, and P. Hostert, "Sensitivity of support vector machines to random feature selection in classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens. , vol. 48, pp. 2880-2889, Jul. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , pp. 2880-2889
    • Waske, B.1    Linden Der S.Van2    Benediksson, J.A.3    Rabe, A.4    Hostert, P.5
  • 14
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • DOI 10.1109/TGRS.2004.842481
    • J. Ham, C. Yangchi, M. M. Crawford, and J. Ghosh, "Investigation of the random forest framework for classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens. , vol. 43, pp. 492-501, Mar. 2005. (Pubitemid 40320271)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4
  • 15
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors," Machine Learning, vol. 24, pp. 123-140, Aug. 1996. (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 16
    • 0242515926 scopus 로고    scopus 로고
    • Attribute bagging: Improving accuracy of classifier ensembles by using random feature subsets
    • DOI 10.1016/S0031-3203(02)00121-8, PII S0031320302001218
    • R. Bryll, R. G. Osuna, and F. Quek, "Attribute bagging: Improving accuracy of classifier ensembles by using random feature subsets," Pattern Recogn. , vol. 36, pp. 1291-1302, 2003. (Pubitemid 36225868)
    • (2003) Pattern Recognition , vol.36 , Issue.6 , pp. 1291-1302
    • Bryll, R.1    Gutierrez-Osuna, R.2    Quek, F.3
  • 18
    • 80955168737 scopus 로고    scopus 로고
    • Automated hyperspectral imagery analysis via support vector machines based multi-classifier system with non-uniform random feature selection
    • Vancouver, Canada
    • S. Samiappan, S. Prasad, and L. M. Bruce, "Automated hyperspectral imagery analysis via support vector machines based multi-classifier system with non-uniform random feature selection," in Proc. IEEE IGARSS, Vancouver, Canada, 2011.
    • (2011) Proc. IEEE IGARSS
    • Samiappan, S.1    Prasad, S.2    Bruce, L.M.3
  • 19
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. J. C. Burges, "A tutorial on support vector machines for pattern recognition," Data Mining and Knowledge Discovery, vol. 2, pp. 212-167, 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 212-167
    • Burges, C.J.C.1
  • 20
    • 0035503160 scopus 로고    scopus 로고
    • Support vector machines and the multiple hypothesis test problem
    • DOI 10.1109/78.960434, PII S1053587X01092169
    • D. J. Sebald and J. A. Bucklew, "Support vector machines and the multiple hypothesis test problem," IEEE Trans. Signal Process. , vol. 49, pp. 2865-2872, 2001. (Pubitemid 33048455)
    • (2001) IEEE Transactions on Signal Processing , vol.49 , Issue.11 , pp. 2865-2872
    • Sebald, D.J.1    Bucklew, J.A.2
  • 21
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • DOI 10.1109/72.991427, PII S1045922702018052
    • C. -W. Hsu and C. -J. Lin, "A comparison of methods for multiclass support vector machines," IEEE Trans. Neural Networks, vol. 13, pp. 415-425, 2002. (Pubitemid 34475042)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 22
  • 23
    • 45249128876 scopus 로고
    • Combining forecasts: A review and annotated bibliography
    • R. T. Clemen, "Combining forecasts: A review and annotated bibliography," Int. J. Forecasting, vol. 5, pp. 559-583, 1989.
    • (1989) Int. J. Forecasting , vol.5 , pp. 559-583
    • Clemen, R.T.1
  • 24
    • 0000749354 scopus 로고
    • Neural network ensembles, cross validation, active learning
    • Cambridge, MA: MIT Press
    • A. Krogh, "Neural network ensembles, cross validation, active learning," in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 1995.
    • (1995) Advances in Neural Information Processing Systems
    • Krogh, A.1
  • 25
    • 0000661341 scopus 로고    scopus 로고
    • Generating accurate and diverse members of a neuralnetwork ensemble
    • Cambridge, MA: MIT Press
    • D. W. Opitz, "Generating accurate and diverse members of a neuralnetwork ensemble," in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 1996.
    • (1996) Advances in Neural Information Processing Systems
    • Opitz, D.W.1
  • 26
    • 0030356238 scopus 로고    scopus 로고
    • Actively Searching for an Effective Neural Network Ensemble
    • DOI 10.1080/095400996116802
    • D. W. Opitz et al. , "Actively searching for an effective neural-network ensemble," Connection Science, vol. 8, pp. 337-353, 1996. (Pubitemid 126400569)
    • (1996) Connection Science , vol.8 , Issue.3-4 , pp. 337-353
    • Opitz, D.W.1    Shavlik, J.W.2
  • 27
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • L. Breiman, "Random forests," Machine Learning, vol. 45, pp. 5-32, 2001. (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 28
    • 53349127642 scopus 로고    scopus 로고
    • Decision fusion with confidence-based weight assignment for hyperspectral target recognition
    • S. Prasad and L. M. Bruce, "Decision fusion with confidence-based weight assignment for hyperspectral target recognition," IEEE Trans. Geosci. Remote Sens. , vol. 46, pp. 1448-1456, 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens , vol.46 , pp. 1448-1456
    • Prasad, S.1    Bruce, L.M.2
  • 30
    • 70349620604 scopus 로고    scopus 로고
    • Band selection of hyperspectral images based on Bhattacharyya distance
    • C. Simin, R. Zhang, W. Cheng, and H. Yuan, "Band selection of hyperspectral images based on Bhattacharyya distance," WSEAS Trans. Inf. Sci. and App. , vol. 6, pp. 1165-1175, 2009.
    • (2009) WSEAS Trans. Inf. Sci. and App , vol.6 , pp. 1165-1175
    • Simin, C.1    Zhang, R.2    Cheng, W.3    Yuan, H.4
  • 31
    • 0033211104 scopus 로고    scopus 로고
    • Analysis of class separation and combination of class-dependent features for handwriting recognition
    • I. -S. Oh, J. S. Lee, and Y. S. Ching, "Analysis of class separation and combination of class-dependent features for handwriting recognition," IEEE Trans. Pattern Anal. Machine Intell. , vol. 21, pp. 1089-1094, 1999.
    • (1999) IEEE Trans. Pattern Anal. Machine Intell , vol.21 , pp. 1089-1094
    • Oh, I.-S.1    Lee, J.S.2    Ching, Y.S.3
  • 32
    • 84877923414 scopus 로고    scopus 로고
    • Purdue University, link (on September 29
    • Purdue University, link (on September 29, 2011) [Online] . Available: https://engineering. purdue. edu/~biehl/MultiSpec/hyperspectral. html
    • (2011)
  • 34
    • 0000665083 scopus 로고
    • Non-parametric estimation of a multivariate probability density
    • V. A. Epanechnikov, "Non-parametric estimation of a multivariate probability density," Theory of Probability and Its Applications, vol. 14, pp. 153-158, 1967.
    • (1967) Theory of Probability and Its Applications , vol.14 , pp. 153-158
    • Epanechnikov, V.A.1
  • 37
    • 0001940458 scopus 로고
    • Adaptive mixtures of local experts and the em algorithm
    • R. A. Jacobs and M. I. Jordan, "Adaptive mixtures of local experts and the EM algorithm," Neural Computing, vol. 6, pp. 79-87, 1991.
    • (1991) Neural Computing , vol.6 , pp. 79-87
    • Jacobs, R.A.1    Jordan, M.I.2
  • 38
    • 0036080105 scopus 로고    scopus 로고
    • Hierarchical fusion of multiple classifiers for hyperspectral data analysis
    • DOI 10.1007/s100440200019
    • S. Kumar, J. Ghosh, andM. M. Crawford, "Hierarchical fusion of multiple classifiers for hyperspectral data analysis," Pattern Analysis Applications, pp. 210-220, 2002, Springer Verlag. (Pubitemid 40830134)
    • (2002) Pattern Analysis and Applications , vol.5 , Issue.2 , pp. 210-220
    • Kumar, S.1    Ghosh, J.2    Crawford, M.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.