메뉴 건너뛰기




Volumn 1, Issue 4, 2010, Pages 293-307

A classifier ensemble based on fusion of support vector machines for classifying hyperspectral data

Author keywords

Classification of remote sensing data; Decision fusion; Hyperspectral data; Support vector machines

Indexed keywords


EID: 79958718997     PISSN: 19479832     EISSN: 19479824     Source Type: Journal    
DOI: 10.1080/19479832.2010.485935     Document Type: Article
Times cited : (102)

References (25)
  • 1
    • 37249003229 scopus 로고    scopus 로고
    • Multiple classifier systems in remote sensing: From basics to recent developments
    • In: M. Haindl, J. Kittler and F. Roli, eds., Heidelberg, Germany: Springer
    • Benediktsson, J.A., Chanussot, J., and Fauvel, M., 2007. Multiple classifier systems in remote sensing: from basics to recent developments. In: M. Haindl, J. Kittler and F. Roli, eds. Multiple Classifier Systems. Heidelberg, Germany: Springer, 501-512.
    • (2007) Multiple Classifier Systems , pp. 501-512
    • Benediktsson, J.A.1    Chanussot, J.2    Fauvel, M.3
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L., 1996. Bagging predictors. Machine Learning, 24 (2), 123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 8
    • 53349084895 scopus 로고    scopus 로고
    • Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas
    • Dalponte, M., Bruzzone, L., and Gianelle, D., 2008. Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas. IEEE Transactions in Geoscience and Remote Sensing, 46 (5), 1416-1427.
    • (2008) IEEE Transactions in Geoscience and Remote Sensing , vol.46 , Issue.5 , pp. 1416-1427
    • Dalponte, M.1    Bruzzone, L.2    Gianelle, D.3
  • 9
    • 22444454265 scopus 로고    scopus 로고
    • Combining classifiers: A theoretical framework
    • Kittler, J., 1998. Combining classifiers: a theoretical framework. Pattern Analysis and Applications, 1, 18-27.
    • (1998) Pattern Analysis and Applications , vol.1 , pp. 18-27
    • Kittler, J.1
  • 10
    • 45849107278 scopus 로고    scopus 로고
    • Multi-source land cover classification for forest fire management based on imaging spectrometry and LiDAR data
    • Koetz, B., et al., 2008. Multi-source land cover classification for forest fire management based on imaging spectrometry and LiDAR data. Forest Ecology and Management, 256 (3), 263-271.
    • (2008) Forest Ecology and Management , vol.256 , Issue.3 , pp. 263-271
    • Koetz, B.1
  • 11
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • In: G. Tesauro, D. Touretzky and T. Leen, eds, Cambridge, UK: MIT Press
    • Krogh, A. and Vedelsby, J., 1995. Neural network ensembles, cross validation, and active learning. In: G. Tesauro, D. Touretzky and T. Leen, eds. Advances in neural information processing systems, Vol. 7, Cambridge, UK: MIT Press, 231-238.
    • (1995) Advances in neural information processing systems , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 12
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • Ham, J., et al., 2005. Investigation of the random forest framework for classification of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 43, 492-501.
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , pp. 492-501
    • Ham, J.1
  • 14
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • IT-14
    • Hughes, G.F., 1968. On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory, IT-14, 55-63.
    • (1968) IEEE Transactions on Information Theory , pp. 55-63
    • Hughes, G.F.1
  • 15
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani, F. and Bruzzone, L., 2004. Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42 (8), 1778-1790.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 16
    • 0030356238 scopus 로고    scopus 로고
    • Actively searching for an effective neural-network ensemble
    • Opitz, D. and Shavlik, J., 1996. Actively searching for an effective neural-network ensemble. Connection Science, 8 (3/4), 337-353.
    • (1996) Connection Science , vol.8 , Issue.3-4 , pp. 337-353
    • Opitz, D.1    Shavlik, J.2
  • 17
    • 4444230479 scopus 로고    scopus 로고
    • Assessment of the effectiveness of support vector machines for hyperspectral data
    • Pal, M. and Mather, P.M., 2004. Assessment of the effectiveness of support vector machines for hyperspectral data. Future Generation Computer Systems, 20, 1215-1225.
    • (2004) Future Generation Computer Systems , vol.20 , pp. 1215-1225
    • Pal, M.1    Mather, P.M.2
  • 18
    • 33747086525 scopus 로고    scopus 로고
    • Some issues in the classification of DAIS hyperspectral data
    • Pal, M. and Mather, P.M., 2006. Some issues in the classification of DAIS hyperspectral data. International Journal of Remote Sensing, 27 (14), 2895-2916.
    • (2006) International Journal of Remote Sensing , vol.27 , Issue.14 , pp. 2895-2916
    • Pal, M.1    Mather, P.M.2
  • 20
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire, R., 1990. The strength of weak learnability. Machine Learning, 5 (2), 197-227.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.1
  • 25
    • 45849101525 scopus 로고    scopus 로고
    • Classifying multilevel imagery from SAR and optical sensors by decision fusion
    • Waske, B. and Van der Linden, S., 2008. Classifying multilevel imagery from SAR and optical sensors by decision fusion. IEEE Transactions on Geoscience and Remote Sensing, 46 (5), 1457-1466.
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.5 , pp. 1457-1466
    • Waske, B.1    van der Linden, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.