메뉴 건너뛰기




Volumn 21, Issue , 2014, Pages 55-64

Exo1 independent DNA mismatch repair involves multiple compensatory nucleases

Author keywords

DNA repair; Exonuclease 1; Mismatch repair; Temozolomide

Indexed keywords

6 O BENZYLGUANINE; ARTEMIS PROTEIN; COMPLEMENTARY DNA; EXONUCLEASE; EXONUCLEASE 1; FAN1 PROTEIN; HETERODUPLEX; MRE11 PROTEIN; NUCLEASE; PEPTIDES AND PROTEINS; SHORT HAIRPIN RNA; TEMOZOLOMIDE; UNCLASSIFIED DRUG; DACARBAZINE; DCLRE1C PROTEIN, MOUSE; DEOXYRIBONUCLEASE; DNA BINDING PROTEIN; DNA LIGASE; ENDONUCLEASE; EXO1 PROTEIN, MOUSE; EXODEOXYRIBONUCLEASE; FAN1 PROTEIN, MOUSE; GUANINE; MRE11A PROTEIN, MOUSE; NUCLEAR PROTEIN; O(6)-BENZYLGUANINE;

EID: 84905398242     PISSN: 15687864     EISSN: 15687856     Source Type: Journal    
DOI: 10.1016/j.dnarep.2014.06.005     Document Type: Article
Times cited : (21)

References (50)
  • 1
    • 0029943449 scopus 로고    scopus 로고
    • Mismatch repair in replication fidelity, genetic recombination, and cancer biology
    • Modrich P., Lahue R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu. Rev. Biochem. 1996, 65:101-133.
    • (1996) Annu. Rev. Biochem. , vol.65 , pp. 101-133
    • Modrich, P.1    Lahue, R.2
  • 2
    • 38049125557 scopus 로고    scopus 로고
    • Mechanisms and functions of DNA mismatch repair
    • Li G.M. Mechanisms and functions of DNA mismatch repair. Cell Res. 2008, 18(1):85-98.
    • (2008) Cell Res. , vol.18 , Issue.1 , pp. 85-98
    • Li, G.M.1
  • 3
    • 33646187811 scopus 로고    scopus 로고
    • The multifaceted mismatch-repair system
    • Jiricny J. The multifaceted mismatch-repair system. Nat. Rev. Mol. Cell Biol. 2006, 7(5):335-346.
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , Issue.5 , pp. 335-346
    • Jiricny, J.1
  • 5
    • 0037445248 scopus 로고    scopus 로고
    • Role of DNA mismatch repair defects in the pathogenesis of human cancer
    • Peltomaki P. Role of DNA mismatch repair defects in the pathogenesis of human cancer. J. Clin. Oncol. 2003, 21(6):1174-1179.
    • (2003) J. Clin. Oncol. , vol.21 , Issue.6 , pp. 1174-1179
    • Peltomaki, P.1
  • 6
    • 0028867842 scopus 로고
    • Mismatch repair: mechanisms and relationship to cancer susceptibility
    • Kolodner R.D. Mismatch repair: mechanisms and relationship to cancer susceptibility. Trends Biochem. Sci. 1995, 20(10):397-401.
    • (1995) Trends Biochem. Sci. , vol.20 , Issue.10 , pp. 397-401
    • Kolodner, R.D.1
  • 7
    • 0029089259 scopus 로고
    • Hereditary nonpolyposis colorectal cancer: the syndrome, the genes, and historical perspectives
    • Marra G., Boland C.R. Hereditary nonpolyposis colorectal cancer: the syndrome, the genes, and historical perspectives. J. Natl. Cancer Inst. 1995, 87(15):1114-1125.
    • (1995) J. Natl. Cancer Inst. , vol.87 , Issue.15 , pp. 1114-1125
    • Marra, G.1    Boland, C.R.2
  • 8
    • 33746189409 scopus 로고    scopus 로고
    • Endonucleolytic function of MutLalpha in human mismatch repair
    • Kadyrov F.A., et al. Endonucleolytic function of MutLalpha in human mismatch repair. Cell 2006, 126(2):297-308.
    • (2006) Cell , vol.126 , Issue.2 , pp. 297-308
    • Kadyrov, F.A.1
  • 9
    • 33748855364 scopus 로고    scopus 로고
    • Structure and function of the components of the human DNA mismatch repair system
    • Jascur T., Boland C.R. Structure and function of the components of the human DNA mismatch repair system. Int. J. Cancer 2006, 119(9):2030-2035.
    • (2006) Int. J. Cancer , vol.119 , Issue.9 , pp. 2030-2035
    • Jascur, T.1    Boland, C.R.2
  • 10
    • 45149112792 scopus 로고    scopus 로고
    • The MutSalpha-proliferating cell nuclear antigen interaction in human DNA mismatch repair
    • Iyer R.R., et al. The MutSalpha-proliferating cell nuclear antigen interaction in human DNA mismatch repair. J. Biol. Chem. 2008, 283(19):13310-13319.
    • (2008) J. Biol. Chem. , vol.283 , Issue.19 , pp. 13310-13319
    • Iyer, R.R.1
  • 11
    • 0029784320 scopus 로고    scopus 로고
    • Biochemistry and genetics of eukaryotic mismatch repair
    • Kolodner R. Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev. 1996, 10(12):1433-1442.
    • (1996) Genes Dev. , vol.10 , Issue.12 , pp. 1433-1442
    • Kolodner, R.1
  • 12
    • 0242442569 scopus 로고    scopus 로고
    • DNA mismatch repair: molecular mechanisms and biological function
    • Schofield M.J., Hsieh P. DNA mismatch repair: molecular mechanisms and biological function. Annu. Rev. Microbiol. 2003, 57:579-608.
    • (2003) Annu. Rev. Microbiol. , vol.57 , pp. 579-608
    • Schofield, M.J.1    Hsieh, P.2
  • 13
    • 58849124160 scopus 로고    scopus 로고
    • O6-methylguanine-induced cell death involves exonuclease 1 as well as DNA mismatch recognition in vivo
    • Klapacz J., et al. O6-methylguanine-induced cell death involves exonuclease 1 as well as DNA mismatch recognition in vivo. Proc. Natl. Acad. Sci U. S. A. 2009, 106(2):576-581.
    • (2009) Proc. Natl. Acad. Sci U. S. A. , vol.106 , Issue.2 , pp. 576-581
    • Klapacz, J.1
  • 14
    • 34548259806 scopus 로고    scopus 로고
    • Exonuclease-1 deletion impairs DNA damage signaling and prolongs lifespan of telomere-dysfunctional mice
    • Schaetzlein S., et al. Exonuclease-1 deletion impairs DNA damage signaling and prolongs lifespan of telomere-dysfunctional mice. Cell 2007, 130(5):863-877.
    • (2007) Cell , vol.130 , Issue.5 , pp. 863-877
    • Schaetzlein, S.1
  • 15
    • 0036682516 scopus 로고    scopus 로고
    • EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants
    • Maringele L., Lydall D. EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants. Genes Dev. 2002, 16(15):1919-1933.
    • (2002) Genes Dev. , vol.16 , Issue.15 , pp. 1919-1933
    • Maringele, L.1    Lydall, D.2
  • 16
    • 0037066720 scopus 로고    scopus 로고
    • Human exonuclease I is required for 5' and 3' mismatch repair
    • Genschel J., Bazemore L.R., Modrich P. Human exonuclease I is required for 5' and 3' mismatch repair. J. Biol. Chem. 2002, 277(15):13302-13311.
    • (2002) J. Biol. Chem. , vol.277 , Issue.15 , pp. 13302-13311
    • Genschel, J.1    Bazemore, L.R.2    Modrich, P.3
  • 17
    • 5044219898 scopus 로고    scopus 로고
    • EXO1-A multi-tasking eukaryotic nuclease
    • Tran P.T., et al. EXO1-A multi-tasking eukaryotic nuclease. DNA Repair (Amst.) 2004, 3(12):1549-1559.
    • (2004) DNA Repair (Amst.) , vol.3 , Issue.12 , pp. 1549-1559
    • Tran, P.T.1
  • 18
    • 77957979862 scopus 로고    scopus 로고
    • PCNA function in the activation and strand direction of MutLalpha endonuclease in mismatch repair
    • Pluciennik A., et al. PCNA function in the activation and strand direction of MutLalpha endonuclease in mismatch repair. Proc. Natl. Acad. Sci. U. S. A. 2010, 107(37):16066-16071.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , Issue.37 , pp. 16066-16071
    • Pluciennik, A.1
  • 19
    • 84872497264 scopus 로고    scopus 로고
    • Exonuclease 1 preferentially repairs mismatches generated by DNA polymerase alpha
    • Liberti S.E., Larrea A.A., Kunkel T.A. Exonuclease 1 preferentially repairs mismatches generated by DNA polymerase alpha. DNA Repair (Amst.) 2013, 12(2):92-96.
    • (2013) DNA Repair (Amst.) , vol.12 , Issue.2 , pp. 92-96
    • Liberti, S.E.1    Larrea, A.A.2    Kunkel, T.A.3
  • 20
    • 0033847512 scopus 로고    scopus 로고
    • Genetic and epigenetic modification of MLH1 accounts for a major share of microsatellite-unstable colorectal cancers
    • Kuismanen S.A., et al. Genetic and epigenetic modification of MLH1 accounts for a major share of microsatellite-unstable colorectal cancers. Am. J. Pathol. 2000, 156(5):1773-1779.
    • (2000) Am. J. Pathol. , vol.156 , Issue.5 , pp. 1773-1779
    • Kuismanen, S.A.1
  • 21
    • 76349089323 scopus 로고    scopus 로고
    • Prognostic relevance of MLH1 and MSH2 mutations in hereditary non-polyposis colorectal cancer patients
    • Russo A., et al. Prognostic relevance of MLH1 and MSH2 mutations in hereditary non-polyposis colorectal cancer patients. Tumori 2009, 95(6):731-738.
    • (2009) Tumori , vol.95 , Issue.6 , pp. 731-738
    • Russo, A.1
  • 22
    • 0037224584 scopus 로고    scopus 로고
    • EXO1 variants occur commonly in normal population: evidence against a role in hereditary nonpolyposis colorectal cancer
    • Jagmohan-Changur S., et al. EXO1 variants occur commonly in normal population: evidence against a role in hereditary nonpolyposis colorectal cancer. Cancer Res. 2003, 63(1):154-158.
    • (2003) Cancer Res. , vol.63 , Issue.1 , pp. 154-158
    • Jagmohan-Changur, S.1
  • 23
    • 1242263318 scopus 로고    scopus 로고
    • Hereditary non-polyposis colorectal cancer and the role of hPMS2 and hEXO1 mutations
    • Thompson E., et al. Hereditary non-polyposis colorectal cancer and the role of hPMS2 and hEXO1 mutations. Clin. Genet. 2004, 65(3):215-225.
    • (2004) Clin. Genet. , vol.65 , Issue.3 , pp. 215-225
    • Thompson, E.1
  • 24
    • 4344649809 scopus 로고    scopus 로고
    • Is hEXO1 a cancer predisposing gene?
    • Liberti S.E., Rasmussen L.J. Is hEXO1 a cancer predisposing gene?. Mol. Cancer Res. 2004, 2(8):427-432.
    • (2004) Mol. Cancer Res. , vol.2 , Issue.8 , pp. 427-432
    • Liberti, S.E.1    Rasmussen, L.J.2
  • 25
    • 0037364995 scopus 로고    scopus 로고
    • Inactivation of Exonuclease 1 in mice results in DNA mismatch repair defects, increased cancer susceptibility, and male and female sterility
    • Wei K., et al. Inactivation of Exonuclease 1 in mice results in DNA mismatch repair defects, increased cancer susceptibility, and male and female sterility. Genes Dev. 2003, 17(5):603-614.
    • (2003) Genes Dev. , vol.17 , Issue.5 , pp. 603-614
    • Wei, K.1
  • 26
    • 0035811037 scopus 로고    scopus 로고
    • In vivo requirement for RecJ, ExoVII, ExoI, and ExoX in methyl-directed mismatch repair
    • Burdett V., et al. In vivo requirement for RecJ, ExoVII, ExoI, and ExoX in methyl-directed mismatch repair. Proc. Natl. Acad. Sci. U. S. A. 2001, 98(12):6765-6770.
    • (2001) Proc. Natl. Acad. Sci. U. S. A. , vol.98 , Issue.12 , pp. 6765-6770
    • Burdett, V.1
  • 27
    • 0041440074 scopus 로고    scopus 로고
    • Repopulating defect of mismatch repair-deficient hematopoietic stem cells
    • Reese J.S., Liu L., Gerson S.L. Repopulating defect of mismatch repair-deficient hematopoietic stem cells. Blood 2003, 102(5):1626-1633.
    • (2003) Blood , vol.102 , Issue.5 , pp. 1626-1633
    • Reese, J.S.1    Liu, L.2    Gerson, S.L.3
  • 28
    • 84884184656 scopus 로고    scopus 로고
    • MGMT repletion after treatment of glioblastoma cells with temozolomide and O6-benzylguanine implicates NFkappaB and mutant p53
    • Vlachostergios P.J., Hatzidaki E., Papandreou C.N. MGMT repletion after treatment of glioblastoma cells with temozolomide and O6-benzylguanine implicates NFkappaB and mutant p53. Neurol. Res. 2013, 35(8):879-882.
    • (2013) Neurol. Res. , vol.35 , Issue.8 , pp. 879-882
    • Vlachostergios, P.J.1    Hatzidaki, E.2    Papandreou, C.N.3
  • 30
    • 63149131262 scopus 로고    scopus 로고
    • Preparation of heteroduplex enhanced green fluorescent protein plasmid for in vivo mismatch repair activity assay
    • Zhou B., et al. Preparation of heteroduplex enhanced green fluorescent protein plasmid for in vivo mismatch repair activity assay. Anal. Biochem. 2009, 388(1):167-169.
    • (2009) Anal. Biochem. , vol.388 , Issue.1 , pp. 167-169
    • Zhou, B.1
  • 31
    • 79952700669 scopus 로고    scopus 로고
    • Mismatch and base excision repair proficiency in murine embryonic stem cells
    • Tichy E.D., et al. Mismatch and base excision repair proficiency in murine embryonic stem cells. DNA Repair (Amst.) 2011, 10(4):445-451.
    • (2011) DNA Repair (Amst.) , vol.10 , Issue.4 , pp. 445-451
    • Tichy, E.D.1
  • 32
    • 81255164924 scopus 로고    scopus 로고
    • DNA mismatch repair proteins are required for efficient herpes simplex virus 1 replication
    • Mohni K.N., et al. DNA mismatch repair proteins are required for efficient herpes simplex virus 1 replication. J. Virol. 2011, 85(23):12241-12253.
    • (2011) J. Virol. , vol.85 , Issue.23 , pp. 12241-12253
    • Mohni, K.N.1
  • 33
    • 0037171943 scopus 로고    scopus 로고
    • Methylation tolerance in mismatch repair proficient cells with low MSH2 protein level
    • Claij N., Te Riele H. Methylation tolerance in mismatch repair proficient cells with low MSH2 protein level. Oncogene 2002, 21(18):2873-2879.
    • (2002) Oncogene , vol.21 , Issue.18 , pp. 2873-2879
    • Claij, N.1    Te Riele, H.2
  • 34
    • 84856233300 scopus 로고    scopus 로고
    • Balancing repair and tolerance of DNA damage caused by alkylating agents
    • Fu D., Calvo J.A., Samson L.D. Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat. Rev. Cancer 2012, 12(2):104-120.
    • (2012) Nat. Rev. Cancer , vol.12 , Issue.2 , pp. 104-120
    • Fu, D.1    Calvo, J.A.2    Samson, L.D.3
  • 35
    • 0030993717 scopus 로고    scopus 로고
    • Temozolomide: a review of its discovery, chemical properties, pre-clinical development and clinical trials
    • Newlands E.S., et al. Temozolomide: a review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat. Rev. 1997, 23(1):35-61.
    • (1997) Cancer Treat. Rev. , vol.23 , Issue.1 , pp. 35-61
    • Newlands, E.S.1
  • 36
    • 18344395671 scopus 로고    scopus 로고
    • Human MRE11 is inactivated in mismatch repair-deficient cancers
    • Giannini G., et al. Human MRE11 is inactivated in mismatch repair-deficient cancers. EMBO Rep. 2002, 3(3):248-254.
    • (2002) EMBO Rep. , vol.3 , Issue.3 , pp. 248-254
    • Giannini, G.1
  • 37
    • 0037019607 scopus 로고    scopus 로고
    • Evidence for a direct association of hMRE11 with the human mismatch repair protein hMLH1
    • Her C., Vo A.T., Wu X. Evidence for a direct association of hMRE11 with the human mismatch repair protein hMLH1. DNA Repair (Amst.) 2002, 1(9):719-729.
    • (2002) DNA Repair (Amst.) , vol.1 , Issue.9 , pp. 719-729
    • Her, C.1    Vo, A.T.2    Wu, X.3
  • 38
    • 19444379003 scopus 로고    scopus 로고
    • HMRE11 deficiency leads to microsatellite instability and defective DNA mismatch repair
    • Vo A.T., et al. hMRE11 deficiency leads to microsatellite instability and defective DNA mismatch repair. EMBO Rep. 2005, 6(5):438-444.
    • (2005) EMBO Rep. , vol.6 , Issue.5 , pp. 438-444
    • Vo, A.T.1
  • 39
    • 84880326910 scopus 로고    scopus 로고
    • Microsatellite instability induced mutations in DNA repair genes CtIp and MRE11 confer hypersensitivity to poly (ADP-ribose) polymerase (PARP) inhibitors in myeloid malignancies
    • Gaymes T.J., et al. Microsatellite instability induced mutations in DNA repair genes CtIp and MRE11 confer hypersensitivity to poly (ADP-ribose) polymerase (PARP) inhibitors in myeloid malignancies. Haematologica 2013, 98(9):1397-1406.
    • (2013) Haematologica , vol.98 , Issue.9 , pp. 1397-1406
    • Gaymes, T.J.1
  • 40
    • 78650734182 scopus 로고    scopus 로고
    • KIAA1018/FAN1 nuclease protects cells against genomic instability induced by interstrand cross-linking agents
    • Yoshikiyo K., et al. KIAA1018/FAN1 nuclease protects cells against genomic instability induced by interstrand cross-linking agents. Proc. Natl. Acad. Sci. U. S. A. 2010, 107(50):21553-21557.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , Issue.50 , pp. 21553-21557
    • Yoshikiyo, K.1
  • 41
    • 77954286076 scopus 로고    scopus 로고
    • A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair
    • Smogorzewska A., et al. A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair. Mol. Cell 2010, 39(1):36-47.
    • (2010) Mol. Cell , vol.39 , Issue.1 , pp. 36-47
    • Smogorzewska, A.1
  • 42
    • 79960864003 scopus 로고    scopus 로고
    • Differences in sensitivity to DNA-damaging Agents between XRCC4- and Artemis-deficient human cells
    • Katsube T., et al. Differences in sensitivity to DNA-damaging Agents between XRCC4- and Artemis-deficient human cells. J. Radiat. Res. 2011, 52(4):415-424.
    • (2011) J. Radiat. Res. , vol.52 , Issue.4 , pp. 415-424
    • Katsube, T.1
  • 43
    • 33845726097 scopus 로고    scopus 로고
    • Methylating agents and DNA repair responses: methylated bases and sources of strand breaks
    • Wyatt M.D., Pittman D.L. Methylating agents and DNA repair responses: methylated bases and sources of strand breaks. Chem. Res. Toxicol. 2006, 19(12):1580-1594.
    • (2006) Chem. Res. Toxicol. , vol.19 , Issue.12 , pp. 1580-1594
    • Wyatt, M.D.1    Pittman, D.L.2
  • 44
    • 0025288239 scopus 로고
    • Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents
    • Beranek D.T. Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents. Mutat. Res. 1990, 231(1):11-30.
    • (1990) Mutat. Res. , vol.231 , Issue.1 , pp. 11-30
    • Beranek, D.T.1
  • 45
    • 75149166496 scopus 로고    scopus 로고
    • MGMT promoter methylation in malignant gliomas: ready for personalized medicine?
    • Weller M., et al. MGMT promoter methylation in malignant gliomas: ready for personalized medicine?. Nat. Rev. Neurol. 2010, 6(1):39-51.
    • (2010) Nat. Rev. Neurol. , vol.6 , Issue.1 , pp. 39-51
    • Weller, M.1
  • 46
    • 0033569816 scopus 로고    scopus 로고
    • Expression specificity of the mouse exonuclease 1 (mExo1) gene
    • Lee B.I., et al. Expression specificity of the mouse exonuclease 1 (mExo1) gene. Nucleic Acids Res. 1999, 27(20):4114-4120.
    • (1999) Nucleic Acids Res. , vol.27 , Issue.20 , pp. 4114-4120
    • Lee, B.I.1
  • 47
    • 84894596621 scopus 로고    scopus 로고
    • Exonuclease 1 is a critical mediator of survival during DNA double strand break repair in nonquiescent hematopoietic stem and progenitor cells
    • Desai A., Qing Y., Gerson S.L. Exonuclease 1 is a critical mediator of survival during DNA double strand break repair in nonquiescent hematopoietic stem and progenitor cells. Stem Cells 2014, 32(2):582-593.
    • (2014) Stem Cells , vol.32 , Issue.2 , pp. 582-593
    • Desai, A.1    Qing, Y.2    Gerson, S.L.3
  • 48
    • 66649124883 scopus 로고    scopus 로고
    • A possible mechanism for exonuclease 1-independent eukaryotic mismatch repair
    • Kadyrov F.A., et al. A possible mechanism for exonuclease 1-independent eukaryotic mismatch repair. Proc. Natl. Acad. Sci. U. S. A. 2009, 106(21):8495-8500.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , Issue.21 , pp. 8495-8500
    • Kadyrov, F.A.1
  • 49
    • 84869162567 scopus 로고    scopus 로고
    • Exonuclease 1 (Exo1) is required for activating response to S(N)1 DNA methylating agents
    • Izumchenko E., Saydi J., Brown K.D. Exonuclease 1 (Exo1) is required for activating response to S(N)1 DNA methylating agents. DNA Repair (Amst.) 2011, 11(12):951-964.
    • (2011) DNA Repair (Amst.) , vol.11 , Issue.12 , pp. 951-964
    • Izumchenko, E.1    Saydi, J.2    Brown, K.D.3
  • 50
    • 84879734618 scopus 로고    scopus 로고
    • Mammalian Exo1 encodes both structural and catalytic functions that play distinct roles in essential biological processes
    • Schaetzlein S., et al. Mammalian Exo1 encodes both structural and catalytic functions that play distinct roles in essential biological processes. Proc. Natl. Acad. Sci. U. S. A. 2013, 110(27):E2470-E2479.
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , Issue.27
    • Schaetzlein, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.