-
1
-
-
64549158068
-
Exploring the effects of carbon sources on the metabolic capacity for shikimic acid production in Escherichia coli using in silico metabolic predictions
-
doi:10.4014/jmb.0700.705
-
Ahn JO, Lee HW, Saha R, Park MS, Jung JK, Lee DY (2008) Exploring the effects of carbon sources on the metabolic capacity for shikimic acid production in Escherichia coli using in silico metabolic predictions. J Microbiol Biotechnol 18(11): 1773-1784. doi: 10. 4014/jmb. 0700. 705.
-
(2008)
J Microbiol Biotechnol
, vol.18
, Issue.11
, pp. 1773-1784
-
-
Ahn, J.O.1
Lee, H.W.2
Saha, R.3
Park, M.S.4
Jung, J.K.5
Lee, D.Y.6
-
2
-
-
31544450286
-
Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection
-
doi:10.1038/msb4100050
-
Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006): 0008. doi: 10. 1038/msb4100050.
-
(2006)
Mol Syst Biol
, vol.2
, Issue.2006
, pp. 0008
-
-
Baba, T.1
Ara, T.2
Hasegawa, M.3
Takai, Y.4
Okumura, Y.5
Baba, M.6
Datsenko, K.A.7
Tomita, M.8
Wanner, B.L.9
Mori, H.10
-
3
-
-
84859800949
-
Shikimic acid: review of its analytical, isolation, and purification techniques from plant and microbial sources
-
doi:10.1007/s12154-011-0064-8
-
Bochkov DV, Sysolyatin SV, Kalashnikov AI, Surmacheva IA (2012) Shikimic acid: review of its analytical, isolation, and purification techniques from plant and microbial sources. J Chem Biol 5(1): 5-17. doi: 10. 1007/s12154-011-0064-8.
-
(2012)
J Chem Biol
, vol.5
, Issue.1
, pp. 5-17
-
-
Bochkov, D.V.1
Sysolyatin, S.V.2
Kalashnikov, A.I.3
Surmacheva, I.A.4
-
4
-
-
0038119755
-
Phosphoenolpyruvate availability and the biosynthesis of shikimic acid
-
doi:10.1021/bp025769p
-
Chandran SS, Yi J, Draths KM, von Daeniken R, Weber W, Frost JW (2003) Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Biotechnol Prog 19(3): 808-814. doi: 10. 1021/bp025769p.
-
(2003)
Biotechnol Prog
, vol.19
, Issue.3
, pp. 808-814
-
-
Chandran, S.S.1
Yi, J.2
Draths, K.M.3
von Daeniken, R.4
Weber, W.5
Frost, J.W.6
-
5
-
-
84862310223
-
Deletion of the aroK gene is essential for high shikimic acid accumulation through the shikimate pathway in E. coli
-
doi:10.1016/j.biortech.2012.05.100
-
Chen K, Dou J, Tang S, Yang Y, Wang H, Fang H, Zhou C (2012) Deletion of the aroK gene is essential for high shikimic acid accumulation through the shikimate pathway in E. coli. Bioresour Technol 119: 141-147. doi: 10. 1016/j. biortech. 2012. 05. 100.
-
(2012)
Bioresour Technol
, vol.119
, pp. 141-147
-
-
Chen, K.1
Dou, J.2
Tang, S.3
Yang, Y.4
Wang, H.5
Fang, H.6
Zhou, C.7
-
6
-
-
0029065955
-
R cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant
-
doi:10.1016/0378-1119(95)00193-A
-
R cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158(1): 9-14. doi: 10. 1016/0378-1119(95)00193-A.
-
(1995)
Gene
, vol.158
, Issue.1
, pp. 9-14
-
-
Cherepanov, P.P.1
Wackernagel, W.2
-
7
-
-
84893649889
-
Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering
-
doi:10.1186/1475-2859-13-21
-
Cui YY, Ling C, Zhang YY, Huang J, Liu JZ (2014) Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering. Microb Cell Fact 13: 21. doi: 10. 1186/1475-2859-13-21.
-
(2014)
Microb Cell Fact
, vol.13
, pp. 21
-
-
Cui, Y.Y.1
Ling, C.2
Zhang, Y.Y.3
Huang, J.4
Liu, J.Z.5
-
8
-
-
0034612342
-
One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products
-
doi:10.1073/pnas.120163297
-
Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97(12): 6640-6645. doi: 10. 1073/pnas. 120163297.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, Issue.12
, pp. 6640-6645
-
-
Datsenko, K.A.1
Wanner, B.L.2
-
9
-
-
0344609866
-
Shikimic acid and quinic acid replacing isolation from plant sources with recombinant microbial biocatalysis
-
doi:10.1021/ja9830243
-
Draths KM, Knop DR, Frost JW (1999) Shikimic acid and quinic acid replacing isolation from plant sources with recombinant microbial biocatalysis. J Am Chem Soc 12: 1603-1604. doi: 10. 1021/ja9830243.
-
(1999)
J Am Chem Soc
, vol.12
, pp. 1603-1604
-
-
Draths, K.M.1
Knop, D.R.2
Frost, J.W.3
-
10
-
-
77950649821
-
Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system
-
doi:10.1186/1475-2859-9-21
-
Escalante A, Calderon R, Valdivia A, de Anda R, Hernandez G, Ramirez OT, Gosset G, Bolivar F (2010) Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Microb Cell Fact 9: 21. doi: 10. 1186/1475-2859-9-21.
-
(2010)
Microb Cell Fact
, vol.9
, pp. 21
-
-
Escalante, A.1
Calderon, R.2
Valdivia, A.3
de Anda, R.4
Hernandez, G.5
Ramirez, O.T.6
Gosset, G.7
Bolivar, F.8
-
11
-
-
84873179221
-
A short overview on the medicinal chemistry of (-)-shikimic acid
-
doi:10.2174/138955712803832735
-
Estevez AM, Estevez RJ (2012) A short overview on the medicinal chemistry of (-)-shikimic acid. Mini Rev Med Chem 12(14): 1443-1454. doi: 10. 2174/138955712803832735.
-
(2012)
Mini Rev Med Chem
, vol.12
, Issue.14
, pp. 1443-1454
-
-
Estevez, A.M.1
Estevez, R.J.2
-
12
-
-
84867731480
-
Production of shikimic acid
-
doi:10.1016/j.biotechadv.2012.03.001
-
Ghosh S, Chisti Y, Banerjee UC (2012) Production of shikimic acid. Biotechnol Adv 30(6): 1425-1431. doi: 10. 1016/j. biotechadv. 2012. 03. 001.
-
(2012)
Biotechnol Adv
, vol.30
, Issue.6
, pp. 1425-1431
-
-
Ghosh, S.1
Chisti, Y.2
Banerjee, U.C.3
-
14
-
-
33750351855
-
Transcriptome analysis of a shikimic acid producing strain of Escherichia coli W3110 grown under carbon- and phosphate-limited conditions
-
doi:10.1016/j.jbiotec.2006.05.007
-
Johansson L, Liden G (2006) Transcriptome analysis of a shikimic acid producing strain of Escherichia coli W3110 grown under carbon- and phosphate-limited conditions. J Biotechnol 126(4): 528-545. doi: 10. 1016/j. jbiotec. 2006. 05. 007.
-
(2006)
J Biotechnol
, vol.126
, Issue.4
, pp. 528-545
-
-
Johansson, L.1
Liden, G.2
-
15
-
-
0035944505
-
Hydroaromatic equilibration during biosynthesis of shikimic acid
-
doi:10.1021/ja0109444
-
Knop DR, Draths KM, Chandran SS, Barker JL, von Daeniken R, Weber W, Frost JW (2001) Hydroaromatic equilibration during biosynthesis of shikimic acid. J Am Chem Soc 123(42): 10173-10182. doi: 10. 1021/ja0109444.
-
(2001)
J Am Chem Soc
, vol.123
, Issue.42
, pp. 10173-10182
-
-
Knop, D.R.1
Draths, K.M.2
Chandran, S.S.3
Barker, J.L.4
von Daeniken, R.5
Weber, W.6
Frost, J.W.7
-
16
-
-
1642457254
-
Metabolic engineering for microbial production of shikimic acid
-
doi:10.1016/j.ymben.2003.09.001
-
Kramer M, Bongaerts J, Bovenberg R, Kremer S, Muller U, Orf S, Wubbolts M, Raeven L (2003) Metabolic engineering for microbial production of shikimic acid. Metab Eng 5(4): 277-283. doi: 10. 1016/j. ymben. 2003. 09. 001.
-
(2003)
Metab Eng
, vol.5
, Issue.4
, pp. 277-283
-
-
Kramer, M.1
Bongaerts, J.2
Bovenberg, R.3
Kremer, S.4
Muller, U.5
Orf, S.6
Wubbolts, M.7
Raeven, L.8
-
17
-
-
0033198744
-
Microbial synthesis of 3-dehydroshikimic acid: a comparative analysis of D-xylose, L-arabinose, and D-glucose carbon sources
-
doi:10.1021/bp990095c
-
Li K, Frost JW (1999) Microbial synthesis of 3-dehydroshikimic acid: a comparative analysis of D-xylose, L-arabinose, and D-glucose carbon sources. Biotechnol Prog 15(5): 876-883. doi: 10. 1021/bp990095c.
-
(1999)
Biotechnol Prog
, vol.15
, Issue.5
, pp. 876-883
-
-
Li, K.1
Frost, J.W.2
-
18
-
-
0033526870
-
Fed-batch fermentor synthesis of 3-dehydroshikimic acid using recombinant Escherichia coli
-
doi:10.1002/(SICI)1097-0290(19990705)64:1<61::AID-BIT7>3.3.CO;2-7
-
Li K, Mikola MR, Draths KM, Worden RM, Frost JW (1999) Fed-batch fermentor synthesis of 3-dehydroshikimic acid using recombinant Escherichia coli. Biotechnol Bioeng 64(1): 61-73. doi: 10. 1002/(SICI)1097-0290(19990705)64: 1<61: AID-BIT7>3. 3. CO;2-7.
-
(1999)
Biotechnol Bioeng
, vol.64
, Issue.1
, pp. 61-73
-
-
Li, K.1
Mikola, M.R.2
Draths, K.M.3
Worden, R.M.4
Frost, J.W.5
-
19
-
-
17744383410
-
Effect of carbon sources differing in oxidation state and transport route on succinate production in metabolically engineered Escherichia coli
-
doi:10.1007/s10295-005-0206-5
-
Lin H, Bennett GN, San KY (2005) Effect of carbon sources differing in oxidation state and transport route on succinate production in metabolically engineered Escherichia coli. J Ind Microbiol Biotechnol 32(3): 87-93. doi: 10. 1007/s10295-005-0206-5.
-
(2005)
J Ind Microbiol Biotechnol
, vol.32
, Issue.3
, pp. 87-93
-
-
Lin, H.1
Bennett, G.N.2
San, K.Y.3
-
20
-
-
84862275341
-
Combinatorial modulation of galP and glk gene expression for improved alternative glucose utilization
-
doi:10.1007/s00253-011-3752-y
-
Lu J, Tang J, Liu Y, Zhu X, Zhang T, Zhang X (2012) Combinatorial modulation of galP and glk gene expression for improved alternative glucose utilization. Appl Microbiol Biotechnol 93(6): 2455-2462. doi: 10. 1007/s00253-011-3752-y.
-
(2012)
Appl Microbiol Biotechnol
, vol.93
, Issue.6
, pp. 2455-2462
-
-
Lu, J.1
Tang, J.2
Liu, Y.3
Zhu, X.4
Zhang, T.5
Zhang, X.6
-
21
-
-
84869808716
-
The shikimate pathway and aromatic amino acid biosynthesis in plants
-
doi:10.1146/annurev-arplant-042811-105439
-
Maeda H, Dudareva N (2012) The shikimate pathway and aromatic amino acid biosynthesis in plants. Ann Rev Plant Biol 63: 73-105. doi: 10. 1146/annurev-arplant-042811-105439.
-
(2012)
Ann Rev Plant Biol
, vol.63
, pp. 73-105
-
-
Maeda, H.1
Dudareva, N.2
-
22
-
-
84889061841
-
Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance
-
doi:10.1186/1475-2859-12-119
-
Matsuda F, Ishii J, Kondo T, Ida K, Tezuka H, Kondo A (2013) Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance. Microb Cell Fact 12: 119. doi: 10. 1186/1475-2859-12-119.
-
(2013)
Microb Cell Fact
, vol.12
, pp. 119
-
-
Matsuda, F.1
Ishii, J.2
Kondo, T.3
Ida, K.4
Tezuka, H.5
Kondo, A.6
-
23
-
-
84866127855
-
Consequences of phosphoenolpyruvate:sugar phosphotranferase system and pyruvate kinase isozymes inactivation in central carbon metabolism flux distribution in Escherichia coli
-
doi:10.1186/1475-2859-11-127
-
Meza E, Becker J, Bolivar F, Gosset G, Wittmann C (2012) Consequences of phosphoenolpyruvate: sugar phosphotranferase system and pyruvate kinase isozymes inactivation in central carbon metabolism flux distribution in Escherichia coli. Microb Cell Fact 11: 127. doi: 10. 1186/1475-2859-11-127.
-
(2012)
Microb Cell Fact
, vol.11
, pp. 127
-
-
Meza, E.1
Becker, J.2
Bolivar, F.3
Gosset, G.4
Wittmann, C.5
-
24
-
-
49649109405
-
Assembly of protein complexes by coexpression in prokaryotic and eukaryotic hosts: an overview
-
doi:10.1007/978-1-60327-058-8_15
-
Perrakis A, Romier C (2008) Assembly of protein complexes by coexpression in prokaryotic and eukaryotic hosts: an overview. Methods Mol Biol 426: 247-256. doi: 10. 1007/978-1-60327-058-8_15.
-
(2008)
Methods Mol Biol
, vol.426
, pp. 247-256
-
-
Perrakis, A.1
Romier, C.2
-
25
-
-
84883747476
-
A natural isolate producing shikimic acid: isolation, identification, and culture condition optimization
-
doi:10.1007/s12010-013-0150-1
-
Rawat G, Tripathi P, Jahan F, Saxena RK (2013a) A natural isolate producing shikimic acid: isolation, identification, and culture condition optimization. Appl Biochem Biotechnol 169(8): 2290-2302. doi: 10. 1007/s12010-013-0150-1.
-
(2013)
Appl Biochem Biotechnol
, vol.169
, Issue.8
, pp. 2290-2302
-
-
Rawat, G.1
Tripathi, P.2
Jahan, F.3
Saxena, R.K.4
-
26
-
-
84877742688
-
Expanding horizons of shikimic acid: recent progresses in production and its endless frontiers in application and market trends
-
doi:10.1007/s00253-013-4840-y
-
Rawat G, Tripathi P, Saxena RK (2013b) Expanding horizons of shikimic acid: recent progresses in production and its endless frontiers in application and market trends. Appl Microbiol Biotechnol 97(10): 4277-4287. doi: 10. 1007/s00253-013-4840-y.
-
(2013)
Appl Microbiol Biotechnol
, vol.97
, Issue.10
, pp. 4277-4287
-
-
Rawat, G.1
Tripathi, P.2
Saxena, R.K.3
-
27
-
-
84872180965
-
Pandemism of swine flu and its prospective drug therapy
-
doi:10.1007/s10096-012-1716-5
-
Saxena RK, Tripathi P, Rawat G (2012) Pandemism of swine flu and its prospective drug therapy. Eur J Clin Microbiol Infect Dis 31(12): 3265-3279. doi: 10. 1007/s10096-012-1716-5.
-
(2012)
Eur J Clin Microbiol Infect Dis
, vol.31
, Issue.12
, pp. 3265-3279
-
-
Saxena, R.K.1
Tripathi, P.2
Rawat, G.3
-
28
-
-
84872131864
-
Activating transhydrogenase and NAD kinase in combination for improving isobutanol production
-
doi:10.1016/j.ymben.2012.11.008
-
Shi A, Zhu X, Lu J, Zhang X, Ma Y (2012) Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metab Eng 16C: 1-10. doi: 10. 1016/j. ymben. 2012. 11. 008.
-
(2012)
Metab Eng
, vol.16 C
, pp. 1-10
-
-
Shi, A.1
Zhu, X.2
Lu, J.3
Zhang, X.4
Ma, Y.5
-
29
-
-
84892365772
-
Fermentative production of shikimic acid: a paradigm shift of production concept from plant route to microbial route
-
doi:10.1007/s00449-013-0940-4
-
Tripathi P, Rawat G, Yadav S, Saxena RK (2013) Fermentative production of shikimic acid: a paradigm shift of production concept from plant route to microbial route. Bioprocess Biosyst Eng 36(11): 1665-1673. doi: 10. 1007/s00449-013-0940-4.
-
(2013)
Bioprocess Biosyst Eng
, vol.36
, Issue.11
, pp. 1665-1673
-
-
Tripathi, P.1
Rawat, G.2
Yadav, S.3
Saxena, R.K.4
-
30
-
-
0141908155
-
Altered glucose transport and shikimate pathway product yields in E. coli
-
doi:10.1021/bp0340584
-
Yi J, Draths KM, Li K, Frost JW (2003) Altered glucose transport and shikimate pathway product yields in E. coli. Biotechnol Prog 19(5): 1450-1459. doi: 10. 1021/bp0340584.
-
(2003)
Biotechnol Prog
, vol.19
, Issue.5
, pp. 1450-1459
-
-
Yi, J.1
Draths, K.M.2
Li, K.3
Frost, J.W.4
|