-
1
-
-
68049121093
-
Anomaly detection: A survey
-
Article 15
-
V. Chandola, A. Banerjee, and V. Kumar, "Anomaly detection: A survey, " ACM CSUR, vol. 41, no. 3, Article 15, 2009.
-
(2009)
ACM CSUR
, vol.41
, Issue.3
-
-
Chandola, V.1
Banerjee, A.2
Kumar, V.3
-
2
-
-
7544223741
-
A survey of outlier detection methodologies
-
V. J. Hodge and J. Austin, "A survey of outlier detection methodologies, " Artif. Intell. Rev., vol. 22, no. 3, pp. 85-126, 2004.
-
(2004)
Artif. Intell. Rev.
, vol.22
, Issue.3
, pp. 85-126
-
-
Hodge, V.J.1
Austin, J.2
-
4
-
-
84859722266
-
Anomaly detection for discrete sequences: A survey
-
May
-
V. Chandola, A. Banerjee, and V. Kumar, "Anomaly detection for discrete sequences: A survey, " IEEE Trans. Knowl. Data Eng., vol. 24, no. 5, pp. 823-839, May 2012.
-
(2012)
IEEE Trans. Knowl. Data Eng.
, vol.24
, Issue.5
, pp. 823-839
-
-
Chandola, V.1
Banerjee, A.2
Kumar, V.3
-
6
-
-
0039253819
-
LOF: Identifying density-based local outliers
-
New York, NY, USA
-
M. M. Breunig, H. P. Kriegel, R. T. Ng, and J. Sander, "LOF: Identifying density-based local outliers, " in Proc. ACM SIGMOD Int. Conf. Manage. Data, New York, NY, USA, 2000, pp. 93-104.
-
(2000)
Proc. ACM SIGMOD Int. Conf. Manage. Data
, pp. 93-104
-
-
Breunig, M.M.1
Kriegel, H.P.2
Ng, R.T.3
Sander, J.4
-
7
-
-
58049218655
-
Clustering-based outlier detection method
-
Shandong, China
-
S. Y. Jiang and Q. B. An, "Clustering-based outlier detection method, " in Proc. ICFSKD, Shandong, China, 2008, pp. 429-433.
-
(2008)
Proc. ICFSKD
, pp. 429-433
-
-
Jiang, S.Y.1
An, Q.B.2
-
9
-
-
0942266514
-
Support vector data description
-
D. M. J. Tax and R. P. W. Duin, "Support vector data description, " Mach. Learn., vol. 54, no. 1, pp. 45-66, 2004.
-
(2004)
Mach. Learn.
, vol.54
, Issue.1
, pp. 45-66
-
-
Tax, D.M.J.1
Duin, R.P.W.2
-
10
-
-
0013314147
-
Support vector data description applied to machine vibration analysis
-
D. M. J. Tax, A. Ypma, and R. P. W. Duin, "Support vector data description applied to machine vibration analysis, " in Proc. ASCI, 1999, pp. 398-405.
-
(1999)
Proc. ASCI
, pp. 398-405
-
-
Tax, D.M.J.1
Ypma, A.2
Duin, R.P.W.3
-
11
-
-
63449133366
-
A survey of uncertain data algorithms and applications
-
May
-
C. C. Aggarwal and P. S. Yu, "A survey of uncertain data algorithms and applications, " IEEE Trans. Knowl. Data Eng., vol. 21, no. 5, pp. 609-623, May 2009.
-
(2009)
IEEE Trans. Knowl. Data Eng.
, vol.21
, Issue.5
, pp. 609-623
-
-
Aggarwal, C.C.1
Yu, P.S.2
-
12
-
-
77954152099
-
Continuous subgraph pattern search over certain and uncertain graph streams
-
Aug.
-
L. Chen and C. Wang, "Continuous subgraph pattern search over certain and uncertain graph streams, " IEEE Trans. Knowl. Data Eng., vol. 22, no. 8, pp. 1093-1109, Aug. 2010.
-
(2010)
IEEE Trans. Knowl. Data Eng.
, vol.22
, Issue.8
, pp. 1093-1109
-
-
Chen, L.1
Wang, C.2
-
13
-
-
34548453089
-
An agent based and biological inspired real-time intrusion detection and security model for computer network operations
-
A. Boukerche, R. B. Machado, K. R. L Juca, J. B. M. Sobral, and M. S. M. A. Notare, "An agent based and biological inspired real-time intrusion detection and security model for computer network operations, " Comput. Commun., vol. 30, no. 16, pp. 49-60, 2007.
-
(2007)
Comput. Commun.
, vol.30
, Issue.16
, pp. 49-60
-
-
Boukerche, A.1
MacHado, R.B.2
Juca, K.R.L.3
Sobral, J.B.M.4
Notare, M.S.M.A.5
-
14
-
-
42949116354
-
Immunocomputing for intelligent intrusion detection
-
May
-
A. O. Tarakanov, "Immunocomputing for intelligent intrusion detection, " IEEE Comput. Intell. Mag., vol. 3, no. 2, pp. 22-30, May 2008.
-
(2008)
IEEE Comput. Intell. Mag.
, vol.3
, Issue.2
, pp. 22-30
-
-
Tarakanov, A.O.1
-
15
-
-
84878266577
-
Anomaly detection via online over-sampling principal component analysis
-
May
-
Y. J. Lee, Y. R. Yeh, and Y. C. F. Wang, "Anomaly detection via online over-sampling principal component analysis, " IEEE Trans. Knowl. Data Eng., vol. 25, no. 7, pp. 1460-1470, May 2012.
-
(2012)
IEEE Trans. Knowl. Data Eng.
, vol.25
, Issue.7
, pp. 1460-1470
-
-
Lee, Y.J.1
Yeh, Y.R.2
Wang, Y.C.F.3
-
16
-
-
0009900351
-
Anomaly detection over noisy data using learned probability distributions
-
San Francisco, CA, USA
-
E. Eskin, "Anomaly detection over noisy data using learned probability distributions, " in Proc. ICML, San Francisco, CA, USA, 2000, pp. 255-262.
-
(2000)
Proc. ICML
, pp. 255-262
-
-
Eskin, E.1
-
17
-
-
77956206316
-
GLS-SOD: A generalized local statistical approach for spatial outlier detection
-
New York, NY, USA
-
F. Chen, C. T. Lu, and A. P. Boedihardjo, "GLS-SOD: A generalized local statistical approach for spatial outlier detection, " in Proc. ACM SIGKDD Int. Conf. KDD, New York, NY, USA, 2010, pp. 1069-1078.
-
(2010)
Proc. ACM SIGKDD Int. Conf. KDD
, pp. 1069-1078
-
-
Chen, F.1
Lu, C.T.2
Boedihardjo, A.P.3
-
18
-
-
78651496720
-
Statistical outlier detection using direct density ratio estimation
-
S. Hido, Y. Tsuboi, H. Kashima, M. Sugiyama, and T. Kanamori, "Statistical outlier detection using direct density ratio estimation, " Knowl. Inform. Syst., vol. 26, no. 2, pp. 309-336, 2011.
-
(2011)
Knowl. Inform. Syst.
, vol.26
, Issue.2
, pp. 309-336
-
-
Hido, S.1
Tsuboi, Y.2
Kashima, H.3
Sugiyama, M.4
Kanamori, T.5
-
19
-
-
70349690679
-
Clustering approaches for anomaly based intrusion detection
-
R. Smith, A. Bivens, M. Embrechts, C. Palagiri, and B. Szymanski, "Clustering approaches for anomaly based intrusion detection, " in Proc. Intell. Eng. Syst. Artif. Neural Netw., 2002, pp. 579-584.
-
(2002)
Proc. Intell. Eng. Syst. Artif. Neural Netw.
, pp. 579-584
-
-
Smith, R.1
Bivens, A.2
Embrechts, M.3
Palagiri, C.4
Szymanski, B.5
-
20
-
-
80052022459
-
COID: A cluster-outlier iterative detection approach to multi-dimensional data analysis
-
Y. Shi and L. Zhang, "COID: A cluster-outlier iterative detection approach to multi-dimensional data analysis, " Knowl. Inform. Syst., vol. 28, no. 3, pp. 709-733, 2011.
-
(2011)
Knowl. Inform. Syst.
, vol.28
, Issue.3
, pp. 709-733
-
-
Shi, Y.1
Zhang, L.2
-
21
-
-
42749086305
-
Fast mining of distance-based outliers in high-dimensional datasets
-
A. Ghoting, S. Parthasarathy, and M. E. Otey, "Fast mining of distance-based outliers in high-dimensional datasets, " Data Min. Knowl. Discov., vol. 16, no. 3, pp. 349-364, 2008.
-
(2008)
Data Min. Knowl. Discov.
, vol.16
, Issue.3
, pp. 349-364
-
-
Ghoting, A.1
Parthasarathy, S.2
Otey, M.E.3
-
22
-
-
42749086305
-
Fast mining of distance-based outliers in high-dimensional datasets
-
A. Ghoting, S. Parthasarathy, and M. Otey, "Fast mining of distance-based outliers in high-dimensional datasets, " Data Min. Knowl. Discov., vol. 16, no. 3, pp. 349-364, 2008.
-
(2008)
Data Min. Knowl. Discov.
, vol.16
, Issue.3
, pp. 349-364
-
-
Ghoting, A.1
Parthasarathy, S.2
Otey, M.3
-
23
-
-
67149118905
-
Dolphin: An efficient algorithm for mining distance-based outliers in very large datasets
-
F. Angiulli and F. Fassetti, "Dolphin: An efficient algorithm for mining distance-based outliers in very large datasets, " ACM Trans. Knowl. Discov. Data, vol. 3, no. 4, pp. 1-57, 2009.
-
(2009)
ACM Trans. Knowl. Discov. Data
, vol.3
, Issue.4
, pp. 1-57
-
-
Angiulli, F.1
Fassetti, F.2
-
24
-
-
79951731317
-
Data editing techniques to allow the application of distance-based outlier detection to streams
-
Sydney, NSW, USA
-
V. Niennattrakul, E. J. Keogh, and C. A. Ratanamahatana, "Data editing techniques to allow the application of distance-based outlier detection to streams, " in Proc. IEEE ICDM, Sydney, NSW, USA, 2010, pp. 947-952.
-
(2010)
Proc. IEEE ICDM
, pp. 947-952
-
-
Niennattrakul, V.1
Keogh, E.J.2
Ratanamahatana, C.A.3
-
25
-
-
80052650750
-
Algorithms for speeding up distance-based outlier detection
-
New York, NY, USA
-
K. Bhaduri, B. L. Matthews, and C. Giannella, "Algorithms for speeding up distance-based outlier detection, " in Proc. ACM SIGKDD Int. Conf. KDD, New York, NY, USA, 2011, pp. 859-867.
-
(2011)
Proc. ACM SIGKDD Int. Conf. KDD
, pp. 859-867
-
-
Bhaduri, K.1
Matthews, B.L.2
Giannella, C.3
-
26
-
-
79951735250
-
Robust outlier detection using SVM regression
-
E. M. Jordaan and G. F. Smits, "Robust outlier detection using SVM regression, " in Proc. IJCNN, 2004, pp. 1098-1105.
-
(2004)
Proc. IJCNN
, pp. 1098-1105
-
-
Jordaan, E.M.1
Smits, G.F.2
-
27
-
-
33749539634
-
Outlier detection by active learning
-
KDD 2006: Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
-
N. Abe, B. Zadrozny, and J. Langford, "Outlier detection by active learning, " in Proc. ACM SIGKDD Int. Conf. KDD, New York, NY, USA, 2006, pp. 504-509. (Pubitemid 44535546)
-
(2006)
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, vol.2006
, pp. 504-509
-
-
Abe, N.1
Zadrozny, B.2
Langford, J.3
-
28
-
-
21844462364
-
A classification framework for anomaly detection
-
Dec.
-
I. Steinwart, D. Hush, and C. Scovel, "A classification framework for anomaly detection, " J. Mach. Learn. Res., vol. 6, pp. 211-232, Dec. 2005.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 211-232
-
-
Steinwart, I.1
Hush, D.2
Scovel, C.3
-
29
-
-
1642475063
-
Resampling approach for anomaly detection in multispectral images
-
Orlando, FL, USA
-
J. Theller and D.M. Cai, "Resampling approach for anomaly detection in multispectral images, " in Proc. SPIE, Orlando, FL, USA, 2003, pp. 230-240.
-
(2003)
Proc. SPIE
, pp. 230-240
-
-
Theller, J.1
Cai, D.M.2
-
30
-
-
84947734535
-
Outlier detection using classifier instability
-
Advances in Pattern Recognition
-
D. Tax and R. Duin, "Outlier detection using classifier instability, " in Proc. Adv. Pattern Recognit., London, U.K., 1998, pp. 593-601, LNCS. (Pubitemid 128117161)
-
(1998)
Lecture Notes In Computer Science
, Issue.1451
, pp. 593-601
-
-
Tax, D.M.J.1
Duin, R.P.W.2
-
31
-
-
84874192412
-
Svdd-based outlier detection on uncertain data
-
B. Liu, Y. Xiao, L. Cao, Z. Hao, and F. Deng, "Svdd-based outlier detection on uncertain data, " Knowl. Inform. Syst., vol. 34, no. 3, pp. 597-618, 2013.
-
(2013)
Knowl. Inform. Syst.
, vol.34
, Issue.3
, pp. 597-618
-
-
Liu, B.1
Xiao, Y.2
Cao, L.3
Hao, Z.4
Deng, F.5
-
32
-
-
84867577175
-
The foundations of cost-sensitive learning
-
San Francisco, CA, USA
-
C. Elkan, "The foundations of cost-sensitive learning, " in Proc. IJCAI, San Francisco, CA, USA, 2001, pp. 973-978.
-
(2001)
Proc. IJCAI
, pp. 973-978
-
-
Elkan, C.1
-
33
-
-
27144549260
-
Editorial: Special issue on learning from imbalanced data sets
-
N. V. Chawla, N. Japkowicz, and A. Kotcz, "Editorial: Special issue on learning from imbalanced data sets, " SIGKDD Explorations, vol. 6, no. 1, pp. 1-6, 2004.
-
(2004)
SIGKDD Explorations
, vol.6
, Issue.1
, pp. 1-6
-
-
Chawla, N.V.1
Japkowicz, N.2
Kotcz, A.3
-
34
-
-
2942627714
-
CREDOS: Classification using ripple down structure (a case for rare classes)
-
M. V. Joshi and V. Kumar, "CREDOS: Classification using ripple down structure (a case for rare classes), " in Proc. SIAM Conf. Data Min., 2004.
-
(2004)
Proc. SIAM Conf. Data Min.
-
-
Joshi, M.V.1
Kumar, V.2
-
35
-
-
85083464467
-
Toward scalable learning with nonuniform class and cost distributions
-
P. Chan and S. Stolfo, "Toward scalable learning with nonuniform class and cost distributions, " in Proc. ACM SIGKDD Int. Conf. KDD, 1998, pp. 164-168.
-
(1998)
Proc. ACM SIGKDD Int. Conf. KDD
, pp. 164-168
-
-
Chan, P.1
Stolfo, S.2
-
36
-
-
85027408292
-
Cost-sensitive pruning of decision trees
-
Catania, Italy
-
G. Nakhaeizadeh, U. Knoll, and B. Tausend, "Cost-sensitive pruning of decision trees, " in Proc. ECML, Catania, Italy, 1994, pp. 383-386.
-
(1994)
Proc. ECML
, pp. 383-386
-
-
Nakhaeizadeh, G.1
Knoll, U.2
Tausend, B.3
-
38
-
-
0036161029
-
Support vector machines for classification in nonstandard situations
-
DOI 10.1023/A:1012406528296
-
Y. Lin, Y. Lee, and G. Wahba, "Support vector machine for classification in nonstandard situations, " Mach. Learn., vol. 46, no. 1-3, pp. 191-202, 2002. (Pubitemid 34129968)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 191-202
-
-
Lin, Y.1
Lee, Y.2
Wahba, G.3
-
39
-
-
22944452794
-
Applying support vector machines to imbalanced datasets
-
Machine Learning: ECML 2004 - 15th European Conference on Machine Learning
-
R. Akbani, S. Kwek, and N. Japkowicz, "Applying support vector machines to imbalanced datasets, " in Proc. ECML, Pisa, Italy, 2004, pp. 39-50. (Pubitemid 41050079)
-
(2004)
Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science)
, vol.3201
, pp. 39-50
-
-
Akbani, R.1
Kwek, S.2
Japkowicz, N.3
-
40
-
-
77957583037
-
Boosting support vector machines for imbalanced data sets
-
B. X. Wang and N. Japkowicz, "Boosting support vector machines for imbalanced data sets, " Knowl. Inform. Syst., vol. 25, no. 1, pp. 1-20, 2010.
-
(2010)
Knowl. Inform. Syst.
, vol.25
, Issue.1
, pp. 1-20
-
-
Wang, B.X.1
Japkowicz, N.2
-
41
-
-
84880794162
-
AUC: A statistically consistent and more discriminating measure than accuracy
-
San Francisco, CA, USA
-
C. X. Ling, J. Huang, and H. Zhang, "AUC: A statistically consistent and more discriminating measure than accuracy, " in Proc. IJCAI, San Francisco, CA, USA, 2003, pp. 519-526.
-
(2003)
Proc. IJCAI
, pp. 519-526
-
-
Ling, C.X.1
Huang, J.2
Zhang, H.3
-
43
-
-
32344440279
-
Feature bagging for outlier detection
-
DOI 10.1145/1081870.1081891, KDD-2005 - Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
-
A. Lazarevic and V. Kumar, "Feature bagging for outlier detection, " in Proc. ACM SIGKDD Int. Conf. KDD, New York, NY, USA, 2005, pp. 157-166. (Pubitemid 43218277)
-
(2005)
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 157-166
-
-
Lazarevic, A.1
Kumar, V.2
-
44
-
-
70349915779
-
A small sphere and large margin approach for novelty detection using training data with outliers
-
Nov.
-
M. Wu and J. Ye, "A small sphere and large margin approach for novelty detection using training data with outliers, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 11, pp. 2088-2092, Nov. 2009.
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.31
, Issue.11
, pp. 2088-2092
-
-
Wu, M.1
Ye, J.2
-
45
-
-
84904411986
-
-
UCI Machine Learning Repository [Online]. Available
-
UCI Machine Learning Repository [Online]. Available: http://archive.ics. uci.edu/ml/datasets.html
-
-
-
-
46
-
-
84904411978
-
-
D. M. J. Tax. Outlier Detection Datasets [Online]. Available
-
D. M. J. Tax. Outlier Detection Datasets [Online]. Available: http://homepage.tudelft.nl/n9d04/occ/index.html
-
-
-
-
47
-
-
0141860731
-
Cluster validity methods: Part i
-
New York, NY, USA
-
Y. Batistakis, M. Halkidi, and M. Vazirgiannis, "Cluster validity methods: Part i, " in Proc. ACM SIGMOD Rec., vol. 31. New York, NY, USA, pp. 40-45, 2002.
-
(2002)
Proc. ACM SIGMOD Rec.
, vol.31
, pp. 40-45
-
-
Batistakis, Y.1
Halkidi, M.2
Vazirgiannis, M.3
-
49
-
-
84867135321
-
Multiple kernel learning from noisy labels by stochastic programming
-
Edinburgh, U.K.
-
T. Yang, M. Mahdavi, R. Jin, L. Zhang, and Y. Zhou, "Multiple kernel learning from noisy labels by stochastic programming, " in Proc. 29th ICML, Edinburgh, U.K., 2012.
-
(2012)
Proc. 29th ICML
-
-
Yang, T.1
Mahdavi, M.2
Jin, R.3
Zhang, L.4
Zhou, Y.5
-
50
-
-
72949121319
-
MILD: Multiple-instance learning via disambiguation
-
Jan.
-
W. Li and D. Yeung, "MILD: Multiple-instance learning via disambiguation, " IEEE Trans. Knowl. Data Eng., vol. 22, no. 1, pp. 76-89, Jan. 2010.
-
(2010)
IEEE Trans. Knowl. Data Eng.
, vol.22
, Issue.1
, pp. 76-89
-
-
Li, W.1
Yeung, D.2
|