메뉴 건너뛰기




Volumn 28, Issue 3, 2011, Pages 709-733

COID: A cluster-outlier iterative detection approach to multi-dimensional data analysis

Author keywords

Cluster and outlier diversity; Clustering; Multi dimensional data; Outlier detection

Indexed keywords

ANOMALY DETECTION; CLUSTER ANALYSIS; DATA MINING; ITERATIVE METHODS; PATTERN RECOGNITION; SIGNAL PROCESSING; STATISTICS;

EID: 80052022459     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-010-0323-y     Document Type: Article
Times cited : (33)

References (46)
  • 4
    • 84949479246 scopus 로고    scopus 로고
    • On the surprising behavior of distance metrics in high dimensional space
    • J. Bussche and V. VianuLecture (Eds.), London: Springer
    • Aggarwal C, Hinneburg A, Keim D (2001) On the surprising behavior of distance metrics in high dimensional space. In: Bussche J, VianuLecture V (eds) Proceedings of the 8th international conference on database theory. Springer, London, pp 420-434.
    • (2001) Proceedings of the 8th International Conference on Database Theory , pp. 420-434
    • Aggarwal, C.1    Hinneburg, A.2    Keim, D.3
  • 5
    • 0347718066 scopus 로고    scopus 로고
    • Fast algorithms for projected clustering
    • A. Delis, C. Faloutsos, and S. Ghandeharizadeh (Eds.), Philadelphia: ACM Press
    • Aggarwal C, Procopiuc C, Wolf J et al (1999) Fast algorithms for projected clustering. In: Delis A, Faloutsos C, Ghandeharizadeh S (eds) Proceedings of the ACM SIGMOD conference on management of data. ACM Press, Philadelphia, pp 61-72.
    • (1999) Proceedings of the ACM SIGMOD Conference on Management of Data , pp. 61-72
    • Aggarwal, C.1    Procopiuc, C.2    Wolf, J.3
  • 6
    • 0347172110 scopus 로고    scopus 로고
    • OPTICS: ordering points to identify the clustering structure
    • A. Delis, C. Faloutsos, and S. Ghandeharizadeh (Eds.), Philadelphia: ACM Press
    • Ankerst M, Breunig M, Kriegel H et al (1999) OPTICS: ordering points to identify the clustering structure. In: Delis A, Faloutsos C, Ghandeharizadeh S (eds) Proceedings of the ACM SIGMOD conference on management of data. ACM Press, Philadelphia, pp 49-60.
    • (1999) Proceedings of the ACM SIGMOD Conference on Management of Data , pp. 49-60
    • Ankerst, M.1    Breunig, M.2    Kriegel, H.3
  • 7
    • 80052021532 scopus 로고    scopus 로고
    • The UCI KDD Archive, Department of Information and Computer Science, University of California, Irvine
    • Bay S (1999) The UCI KDD Archive [http://kdd.ics.uci.edu]. Department of Information and Computer Science, University of California, Irvine.
    • (1999)
    • Bay, S.1
  • 13
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • E. Simoudis, J. Han, and U. Fayyad (Eds.), Portland: AAAI Press
    • Ester M, Kriegel H, Sander J et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Simoudis E, Han J, Fayyad U (eds) Proceedings of 2nd international conference on knowledge discovery and data mining. AAAI Press, Portland, pp 226-231.
    • (1996) Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining , pp. 226-231
    • Ester, M.1    Kriegel, H.2    Sander, J.3
  • 16
    • 0021938963 scopus 로고
    • Clustering to minimize the maximum intercluster distance
    • Gonzalez T (1985) Clustering to minimize the maximum intercluster distance. Theor Comput Sci 38: 311-322.
    • (1985) Theor Comput Sci , vol.38 , pp. 311-322
    • Gonzalez, T.1
  • 18
    • 0032652570 scopus 로고    scopus 로고
    • ROCK: A robust clustering algorithm for categorical attributes
    • IEEE Computer Society Press, Sydney
    • Guha S, Rastogi R, Shim K (1999) ROCK: a robust clustering algorithm for categorical attributes. In: Proceedings of the IEEE conference on data engineering. IEEE Computer Society Press, Sydney, pp 512-521.
    • (1999) Proceedings of the IEEE Conference On Data Engineering , pp. 512-521
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 19
    • 85140527321 scopus 로고    scopus 로고
    • An efficient approach to clustering in large multimedia databases with noise
    • R. Agrawal, P. Stolorz, and G. Piatetsky-Shapiro (Eds.), New York: AAAI Press
    • Hinneburg A, Keim D (1998) An efficient approach to clustering in large multimedia databases with noise. In: Agrawal R, Stolorz P, Piatetsky-Shapiro G (eds) Proceedings of the fourth international conference on knowledge discovery and data mining. AAAI Press, New York, pp 58-65.
    • (1998) Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining , pp. 58-65
    • Hinneburg, A.1    Keim, D.2
  • 21
    • 1542292055 scopus 로고    scopus 로고
    • What is the nearest neighbor in high dimensional spaces?
    • A. Abbadi, M. Brodie, and S. Chakravarthy (Eds.), Cairo: Morgan Kaufmann
    • Hinneburg A, Aggarwal C, Keim D (2000) What is the nearest neighbor in high dimensional spaces?. In: Abbadi A, Brodie M, Chakravarthy S (eds) Proceedings of 26th international conference on very large data bases. Morgan Kaufmann, Cairo, pp 506-515.
    • (2000) Proceedings of 26th International Conference on Very Large Data Bases , pp. 506-515
    • Hinneburg, A.1    Aggarwal, C.2    Keim, D.3
  • 22
    • 84893405732 scopus 로고    scopus 로고
    • Data clustering: a review
    • Jain A, Murty M, Flyn P (1999) Data clustering: a review. ACM Comput Surv 31(3): 264-323.
    • (1999) ACM Comput Surv , vol.31 , Issue.3 , pp. 264-323
    • Jain, A.1    Murty, M.2    Flyn, P.3
  • 23
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon: hierarchical clustering using dynamic modeling
    • Karypis G, Han E, Kumar V (1999) Chameleon: hierarchical clustering using dynamic modeling. Computer 32: 68-75.
    • (1999) Computer , vol.32 , pp. 68-75
    • Karypis, G.1    Han, E.2    Kumar, V.3
  • 25
    • 0002948319 scopus 로고    scopus 로고
    • Algorithms for mining distance-based outliers in large datasets
    • A. Gupta, O. Shmueli, and J. Widom (Eds.), New York: Morgan Kaufmann
    • Knorr E, Ng R (1998) Algorithms for mining distance-based outliers in large datasets. In: Gupta A, Shmueli O, Widom J (eds) Proceedings of 24th international conference on very large data bases. Morgan Kaufmann, New York, pp 392-403.
    • (1998) Proceedings of 24th International Conference on Very Large Data Bases , pp. 392-403
    • Knorr, E.1    Ng, R.2
  • 27
    • 0003136237 scopus 로고
    • Efficient and effective clustering methods for spatial data mining
    • J. Bocca, M. Jarke, and C. Zaniolo (Eds.), Santiago de Chile: Morgan Kaufmann
    • Ng R, Han J (1994) Efficient and effective clustering methods for spatial data mining. In: Bocca J, Jarke M, Zaniolo C (eds) Proceedings of the 20th international conference on very large data bases. Morgan Kaufmann, Santiago de Chile, pp 144-155.
    • (1994) Proceedings of the 20th International Conference on Very Large Data Bases , pp. 144-155
    • Ng, R.1    Han, J.2
  • 29
    • 41149110163 scopus 로고    scopus 로고
    • The importance of generalizability for anomaly detection
    • Peterson G, McBride B (2008) The importance of generalizability for anomaly detection. Knowl Inf Syst 14(3): 377-392.
    • (2008) Knowl Inf Syst , vol.14 , Issue.3 , pp. 377-392
    • Peterson, G.1    McBride, B.2
  • 30
    • 0039845384 scopus 로고    scopus 로고
    • Efficient algorithms for mining outliers from large data sets
    • W. Chen, J. Naughton, and P. Bernstein (Eds.), Dallas: ACM
    • Ramaswamy S, Rastogi R, Shim K (2000) Efficient algorithms for mining outliers from large data sets. In: Chen W, Naughton J, Bernstein P (eds) Proceedings of the ACM SIGMOD conference on management of data. ACM, Dallas, pp 427-438.
    • (2000) Proceedings of the ACM SIGMOD Conference on Management of Data , pp. 427-438
    • Ramaswamy, S.1    Rastogi, R.2    Shim, K.3
  • 32
    • 0003052357 scopus 로고    scopus 로고
    • WaveCluster: A multi-resolution clustering approach for very large spatial databases
    • In: Gupta A, Shmueli O, Widom J, Morgan Kaufmann, New York
    • Sheikholeslami G, Chatterjee S, Zhang A (1998) WaveCluster: a multi-resolution clustering approach for very large spatial databases. In: Gupta A, Shmueli O, Widom J (eds) Proceedings of 24th international conference on very large data bases. Morgan Kaufmann, New York, pp 428-439.
    • (1998) Proceedings of 24th International Conference On Very Large Data Bases , pp. 428-439
    • Sheikholeslami, G.1    Chatterjee, S.2    Zhang, A.3
  • 34
    • 70450140380 scopus 로고    scopus 로고
    • SubCOID: Exploring cluster-outlier iterative detection approach to multi-dimensional data analysis in subspace
    • ACM, Auburn
    • Shi Y (2008b) SubCOID: exploring cluster-outlier iterative detection approach to multi-dimensional data analysis in subspace. In: ACMSE 2008: the 46th ACM southeast conference. ACM, Auburn, pp 132-135.
    • (2008) In: ACMSE 2008: The 46th ACM Southeast Conference , pp. 132-135
    • Shi, Y.1
  • 35
    • 28444433341 scopus 로고    scopus 로고
    • Towards exploring interactive relationship between clusters and outliers in multi-dimensional data analysis
    • IEEE Computer Society, Tokyo
    • Shi Y, Zhang A (2005) Towards exploring interactive relationship between clusters and outliers in multi-dimensional data analysis. In: Proceedings of the 21st international conference on data engineering. IEEE Computer Society, Tokyo, pp 518-519.
    • (2005) Proceedings of the 21st International Conference On Data Engineering , pp. 518-519
    • Shi, Y.1    Zhang, A.2
  • 36
    • 85012120070 scopus 로고    scopus 로고
    • A shrinking-based approach for multi-dimensional data analysis
    • J. Freytag, P. Lockemann, and S. Abiteboul (Eds.), Berlin: ACM
    • Shi Y, Song Y, Zhang A (2003) A shrinking-based approach for multi-dimensional data analysis. In: Freytag J, Lockemann P, Abiteboul S et al (eds) Proceedings of 29th international conference on very large data bases. ACM, Berlin, pp 440-451.
    • (2003) Proceedings of 29th International Conference on Very Large Data Bases , pp. 440-451
    • Shi, Y.1    Song, Y.2    Zhang, A.3
  • 38
    • 39649101072 scopus 로고    scopus 로고
    • A cluster validity measure with outlier detection for support vector clustering
    • Wang J, Chiang J (2008) A cluster validity measure with outlier detection for support vector clustering. IEEE Trans Syst, Man, Cybernet, B 38(1): 78-89.
    • (2008) IEEE Trans Syst, Man, Cybernet, B , vol.38 , Issue.1 , pp. 78-89
    • Wang, J.1    Chiang, J.2
  • 39
    • 84994158589 scopus 로고    scopus 로고
    • STING: a statistical information grid approach to spatial data mining
    • M. Jarke, M. Carey, and K. Dittrich (Eds.), Athens: Morgan Kaufmann
    • Wang W, Yang J, Muntz R (1997) STING: a statistical information grid approach to spatial data mining. In: Jarke M, Carey M, Dittrich K et al (eds) Proceedings of 23rd international conference on very large data bases. Morgan Kaufmann, Athens, pp 186-195.
    • (1997) Proceedings of 23rd International Conference on Very Large Data Bases , pp. 186-195
    • Wang, W.1    Yang, J.2    Muntz, R.3
  • 41
    • 37549018049 scopus 로고    scopus 로고
    • Top 10 algorithms in data mining
    • Wu X, Kumar V, Ross Q et al (2008) Top 10 algorithms in data mining. Knowl Inf Syst 14(1): 1-37.
    • (2008) Knowl Inf Syst , vol.14 , Issue.1 , pp. 1-37
    • Wu, X.1    Kumar, V.2    Ross, Q.3
  • 42
    • 67349254647 scopus 로고    scopus 로고
    • Characterizing pattern preserving clustering
    • Xiong H, Steinbach M, Ruslim A et al (2008) Characterizing pattern preserving clustering. Knowl Inf Syst 19(3): 311-336.
    • (2008) Knowl Inf Syst , vol.19 , Issue.3 , pp. 311-336
    • Xiong, H.1    Steinbach, M.2    Ruslim, A.3
  • 45
    • 85132247975 scopus 로고    scopus 로고
    • FindOut: finding outliers in very large Datasets
    • Yu D, Sheikholeslami G, Zhang A (2000) FindOut: finding outliers in very large Datasets. Knowl Inf Syst 4(4): 387-412.
    • (2000) Knowl Inf Syst , vol.4 , Issue.4 , pp. 387-412
    • Yu, D.1    Sheikholeslami, G.2    Zhang, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.