-
1
-
-
49049108359
-
ELKI: A software system for evaluation of subspace clustering algorithms
-
In: Ludascher B, Mamoulis N, Hong Kong
-
Achtert E, Kriegel H, Zimek A (2008) ELKI: a software system for evaluation of subspace clustering algorithms. In: Ludascher B, Mamoulis N (eds) Proceedings of the 20th international conference on scientific and statistical database management (SSDBM), Hong Kong, pp 580-585.
-
(2008)
Proceedings of the 20th International Conference On Scientific and Statistical Database Management (SSDBM)
, pp. 580-585
-
-
Achtert, E.1
Kriegel, H.2
Zimek, A.3
-
3
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
L. Haas and A. Tiwary (Eds.), Seattle: ACM Press
-
Agrawal R, Gehrke J, Gunopulos D et al (1998) Automatic subspace clustering of high dimensional data for data mining applications. In: Haas L, Tiwary A (eds) Proceedings of the ACM SIGMOD international conference on management of data. ACM Press, Seattle, pp 94-105.
-
(1998)
Proceedings of the ACM SIGMOD International Conference on Management of Data
, pp. 94-105
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
-
4
-
-
84949479246
-
On the surprising behavior of distance metrics in high dimensional space
-
J. Bussche and V. VianuLecture (Eds.), London: Springer
-
Aggarwal C, Hinneburg A, Keim D (2001) On the surprising behavior of distance metrics in high dimensional space. In: Bussche J, VianuLecture V (eds) Proceedings of the 8th international conference on database theory. Springer, London, pp 420-434.
-
(2001)
Proceedings of the 8th International Conference on Database Theory
, pp. 420-434
-
-
Aggarwal, C.1
Hinneburg, A.2
Keim, D.3
-
5
-
-
0347718066
-
Fast algorithms for projected clustering
-
A. Delis, C. Faloutsos, and S. Ghandeharizadeh (Eds.), Philadelphia: ACM Press
-
Aggarwal C, Procopiuc C, Wolf J et al (1999) Fast algorithms for projected clustering. In: Delis A, Faloutsos C, Ghandeharizadeh S (eds) Proceedings of the ACM SIGMOD conference on management of data. ACM Press, Philadelphia, pp 61-72.
-
(1999)
Proceedings of the ACM SIGMOD Conference on Management of Data
, pp. 61-72
-
-
Aggarwal, C.1
Procopiuc, C.2
Wolf, J.3
-
6
-
-
0347172110
-
OPTICS: ordering points to identify the clustering structure
-
A. Delis, C. Faloutsos, and S. Ghandeharizadeh (Eds.), Philadelphia: ACM Press
-
Ankerst M, Breunig M, Kriegel H et al (1999) OPTICS: ordering points to identify the clustering structure. In: Delis A, Faloutsos C, Ghandeharizadeh S (eds) Proceedings of the ACM SIGMOD conference on management of data. ACM Press, Philadelphia, pp 49-60.
-
(1999)
Proceedings of the ACM SIGMOD Conference on Management of Data
, pp. 49-60
-
-
Ankerst, M.1
Breunig, M.2
Kriegel, H.3
-
7
-
-
80052021532
-
-
The UCI KDD Archive, Department of Information and Computer Science, University of California, Irvine
-
Bay S (1999) The UCI KDD Archive [http://kdd.ics.uci.edu]. Department of Information and Computer Science, University of California, Irvine.
-
(1999)
-
-
Bay, S.1
-
8
-
-
84947205653
-
When is "nearest neighbor" meaningful?
-
C. Beeri and P. Buneman (Eds.), Jerusalem: Springer
-
Beyer K, Goldstein J, Ramakrishnan R et al (1999) When is "nearest neighbor" meaningful?. In: Beeri C, Buneman P (eds) Proceedings of international conference on database theory. Springer, Jerusalem, pp 217- 235.
-
(1999)
Proceedings of International Conference on Database Theory
, pp. 217-235
-
-
Beyer, K.1
Goldstein, J.2
Ramakrishnan, R.3
-
10
-
-
0039253819
-
LOF: identifying density-based local outliers
-
W. Chen, J. Naughton, and P. Bernstein (Eds.), Dallas: ACM
-
Breunig M, Kriegel H, Ng R et al (2000) LOF: identifying density-based local outliers. In: Chen W, Naughton J, Bernstein P (eds) Proceedings of the ACM SIGMOD conference on management of data. ACM, Dallas, pp 93-104.
-
(2000)
Proceedings of the ACM SIGMOD Conference on Management of Data
, pp. 93-104
-
-
Breunig, M.1
Kriegel, H.2
Ng, R.3
-
11
-
-
36849092449
-
Density-based clustering for real-time stream data
-
P. Berkhin, R. Caruana, and X. Wu (Eds.), San Jose: ACM
-
Chen Y, Tu L (2007) Density-based clustering for real-time stream data. In: Berkhin P, Caruana R, Wu X (eds) Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, San Jose, pp 133-142.
-
(2007)
Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 133-142
-
-
Chen, Y.1
Tu, L.2
-
13
-
-
85170282443
-
A density-based algorithm for discovering clusters in large spatial databases with noise
-
E. Simoudis, J. Han, and U. Fayyad (Eds.), Portland: AAAI Press
-
Ester M, Kriegel H, Sander J et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Simoudis E, Han J, Fayyad U (eds) Proceedings of 2nd international conference on knowledge discovery and data mining. AAAI Press, Portland, pp 226-231.
-
(1996)
Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.2
Sander, J.3
-
15
-
-
85043349209
-
Initialization of iterative refinement clustering algorithms
-
R. Agrawal, P. Stolorz, and G. Piatetsky-Shapiro (Eds.), New York: AAAI Press
-
Fayyad U, Reina C, Bradley P (1998) Initialization of iterative refinement clustering algorithms. In: Agrawal R, Stolorz P, Piatetsky-Shapiro G (eds) Proceedings of the fourth international conference on knowledge discovery and data mining. AAAI Press, New York, pp 194-198.
-
(1998)
Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining
, pp. 194-198
-
-
Fayyad, U.1
Reina, C.2
Bradley, P.3
-
16
-
-
0021938963
-
Clustering to minimize the maximum intercluster distance
-
Gonzalez T (1985) Clustering to minimize the maximum intercluster distance. Theor Comput Sci 38: 311-322.
-
(1985)
Theor Comput Sci
, vol.38
, pp. 311-322
-
-
Gonzalez, T.1
-
17
-
-
0032091595
-
CURE: an efficient clustering algorithm for large databases
-
L. Haas and A. Tiwary (Eds.), Seattle: ACM Press
-
Guha S, Rastogi R, Shim K (1998) CURE: an efficient clustering algorithm for large databases. In: Haas L, Tiwary A (eds) Proceedings of the ACM SIGMOD international conference on management of data. ACM Press, Seattle, pp 73-84.
-
(1998)
Proceedings of the ACM SIGMOD International Conference on Management of Data
, pp. 73-84
-
-
Guha, S.1
Rastogi, R.2
Shim, K.3
-
18
-
-
0032652570
-
ROCK: A robust clustering algorithm for categorical attributes
-
IEEE Computer Society Press, Sydney
-
Guha S, Rastogi R, Shim K (1999) ROCK: a robust clustering algorithm for categorical attributes. In: Proceedings of the IEEE conference on data engineering. IEEE Computer Society Press, Sydney, pp 512-521.
-
(1999)
Proceedings of the IEEE Conference On Data Engineering
, pp. 512-521
-
-
Guha, S.1
Rastogi, R.2
Shim, K.3
-
19
-
-
85140527321
-
An efficient approach to clustering in large multimedia databases with noise
-
R. Agrawal, P. Stolorz, and G. Piatetsky-Shapiro (Eds.), New York: AAAI Press
-
Hinneburg A, Keim D (1998) An efficient approach to clustering in large multimedia databases with noise. In: Agrawal R, Stolorz P, Piatetsky-Shapiro G (eds) Proceedings of the fourth international conference on knowledge discovery and data mining. AAAI Press, New York, pp 58-65.
-
(1998)
Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining
, pp. 58-65
-
-
Hinneburg, A.1
Keim, D.2
-
20
-
-
47649129920
-
A data set oriented approach for clustering algorithm selection
-
In: Raedt L, Siebes A, Springer, Freiburg
-
Halkidi M, Vazirgiannis M (2001) A data set oriented approach for clustering algorithm selection. In: Raedt L, Siebes A (eds) Proceedings of the 5th European conference on principles of data mining and knowledge discovery. Springer, Freiburg, pp 165-179.
-
(2001)
Proceedings of the 5th European Conference On Principles of Data Mining and Knowledge Discovery
, pp. 165-179
-
-
Halkidi, M.1
Vazirgiannis, M.2
-
21
-
-
1542292055
-
What is the nearest neighbor in high dimensional spaces?
-
A. Abbadi, M. Brodie, and S. Chakravarthy (Eds.), Cairo: Morgan Kaufmann
-
Hinneburg A, Aggarwal C, Keim D (2000) What is the nearest neighbor in high dimensional spaces?. In: Abbadi A, Brodie M, Chakravarthy S (eds) Proceedings of 26th international conference on very large data bases. Morgan Kaufmann, Cairo, pp 506-515.
-
(2000)
Proceedings of 26th International Conference on Very Large Data Bases
, pp. 506-515
-
-
Hinneburg, A.1
Aggarwal, C.2
Keim, D.3
-
23
-
-
0032686723
-
Chameleon: hierarchical clustering using dynamic modeling
-
Karypis G, Han E, Kumar V (1999) Chameleon: hierarchical clustering using dynamic modeling. Computer 32: 68-75.
-
(1999)
Computer
, vol.32
, pp. 68-75
-
-
Karypis, G.1
Han, E.2
Kumar, V.3
-
25
-
-
0002948319
-
Algorithms for mining distance-based outliers in large datasets
-
A. Gupta, O. Shmueli, and J. Widom (Eds.), New York: Morgan Kaufmann
-
Knorr E, Ng R (1998) Algorithms for mining distance-based outliers in large datasets. In: Gupta A, Shmueli O, Widom J (eds) Proceedings of 24th international conference on very large data bases. Morgan Kaufmann, New York, pp 392-403.
-
(1998)
Proceedings of 24th International Conference on Very Large Data Bases
, pp. 392-403
-
-
Knorr, E.1
Ng, R.2
-
27
-
-
0003136237
-
Efficient and effective clustering methods for spatial data mining
-
J. Bocca, M. Jarke, and C. Zaniolo (Eds.), Santiago de Chile: Morgan Kaufmann
-
Ng R, Han J (1994) Efficient and effective clustering methods for spatial data mining. In: Bocca J, Jarke M, Zaniolo C (eds) Proceedings of the 20th international conference on very large data bases. Morgan Kaufmann, Santiago de Chile, pp 144-155.
-
(1994)
Proceedings of the 20th International Conference on Very Large Data Bases
, pp. 144-155
-
-
Ng, R.1
Han, J.2
-
28
-
-
44649189835
-
-
Osaka, pp: Springer
-
Nguyen M, Mark L, Omiecinski E (2008) Unusual pattern detection in high dimensions. Advances in knowledge discovery and data mining, 12th Pacific-Asia conference. Springer, Osaka, pp, pp 247-259.
-
(2008)
Unusual Pattern Detection in High Dimensions. Advances in Knowledge Discovery and Data Mining, 12th Pacific-Asia Conference
, pp. 247-259
-
-
Nguyen, M.1
Mark, L.2
Omiecinski, E.3
-
29
-
-
41149110163
-
The importance of generalizability for anomaly detection
-
Peterson G, McBride B (2008) The importance of generalizability for anomaly detection. Knowl Inf Syst 14(3): 377-392.
-
(2008)
Knowl Inf Syst
, vol.14
, Issue.3
, pp. 377-392
-
-
Peterson, G.1
McBride, B.2
-
30
-
-
0039845384
-
Efficient algorithms for mining outliers from large data sets
-
W. Chen, J. Naughton, and P. Bernstein (Eds.), Dallas: ACM
-
Ramaswamy S, Rastogi R, Shim K (2000) Efficient algorithms for mining outliers from large data sets. In: Chen W, Naughton J, Bernstein P (eds) Proceedings of the ACM SIGMOD conference on management of data. ACM, Dallas, pp 427-438.
-
(2000)
Proceedings of the ACM SIGMOD Conference on Management of Data
, pp. 427-438
-
-
Ramaswamy, S.1
Rastogi, R.2
Shim, K.3
-
32
-
-
0003052357
-
WaveCluster: A multi-resolution clustering approach for very large spatial databases
-
In: Gupta A, Shmueli O, Widom J, Morgan Kaufmann, New York
-
Sheikholeslami G, Chatterjee S, Zhang A (1998) WaveCluster: a multi-resolution clustering approach for very large spatial databases. In: Gupta A, Shmueli O, Widom J (eds) Proceedings of 24th international conference on very large data bases. Morgan Kaufmann, New York, pp 428-439.
-
(1998)
Proceedings of 24th International Conference On Very Large Data Bases
, pp. 428-439
-
-
Sheikholeslami, G.1
Chatterjee, S.2
Zhang, A.3
-
34
-
-
70450140380
-
SubCOID: Exploring cluster-outlier iterative detection approach to multi-dimensional data analysis in subspace
-
ACM, Auburn
-
Shi Y (2008b) SubCOID: exploring cluster-outlier iterative detection approach to multi-dimensional data analysis in subspace. In: ACMSE 2008: the 46th ACM southeast conference. ACM, Auburn, pp 132-135.
-
(2008)
In: ACMSE 2008: The 46th ACM Southeast Conference
, pp. 132-135
-
-
Shi, Y.1
-
35
-
-
28444433341
-
Towards exploring interactive relationship between clusters and outliers in multi-dimensional data analysis
-
IEEE Computer Society, Tokyo
-
Shi Y, Zhang A (2005) Towards exploring interactive relationship between clusters and outliers in multi-dimensional data analysis. In: Proceedings of the 21st international conference on data engineering. IEEE Computer Society, Tokyo, pp 518-519.
-
(2005)
Proceedings of the 21st International Conference On Data Engineering
, pp. 518-519
-
-
Shi, Y.1
Zhang, A.2
-
36
-
-
85012120070
-
A shrinking-based approach for multi-dimensional data analysis
-
J. Freytag, P. Lockemann, and S. Abiteboul (Eds.), Berlin: ACM
-
Shi Y, Song Y, Zhang A (2003) A shrinking-based approach for multi-dimensional data analysis. In: Freytag J, Lockemann P, Abiteboul S et al (eds) Proceedings of 29th international conference on very large data bases. ACM, Berlin, pp 440-451.
-
(2003)
Proceedings of 29th International Conference on Very Large Data Bases
, pp. 440-451
-
-
Shi, Y.1
Song, Y.2
Zhang, A.3
-
37
-
-
33749567862
-
Mining distance-based outliers from large databases in any metric space
-
T. Eliassi-Rad, L. Ungar, and M. Craven (Eds.), Philadelphia: ACM
-
Tao Y, Xiao X, Zhou S (2006) Mining distance-based outliers from large databases in any metric space. In: Eliassi-Rad T, Ungar L, Craven M et al (eds) Proceedings of the twelfth ACM SIGKDD international conference on knowledge discovery and data mining. ACM, Philadelphia, pp 394-403.
-
(2006)
Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 394-403
-
-
Tao, Y.1
Xiao, X.2
Zhou, S.3
-
38
-
-
39649101072
-
A cluster validity measure with outlier detection for support vector clustering
-
Wang J, Chiang J (2008) A cluster validity measure with outlier detection for support vector clustering. IEEE Trans Syst, Man, Cybernet, B 38(1): 78-89.
-
(2008)
IEEE Trans Syst, Man, Cybernet, B
, vol.38
, Issue.1
, pp. 78-89
-
-
Wang, J.1
Chiang, J.2
-
39
-
-
84994158589
-
STING: a statistical information grid approach to spatial data mining
-
M. Jarke, M. Carey, and K. Dittrich (Eds.), Athens: Morgan Kaufmann
-
Wang W, Yang J, Muntz R (1997) STING: a statistical information grid approach to spatial data mining. In: Jarke M, Carey M, Dittrich K et al (eds) Proceedings of 23rd international conference on very large data bases. Morgan Kaufmann, Athens, pp 186-195.
-
(1997)
Proceedings of 23rd International Conference on Very Large Data Bases
, pp. 186-195
-
-
Wang, W.1
Yang, J.2
Muntz, R.3
-
40
-
-
33749564287
-
Outlier detection by sampling with accuracy guarantees
-
T. Eliassi-Rad, L. Ungar, and M. Craven (Eds.), Philadelphia: ACM
-
Wu M, Jermaine C (2006) Outlier detection by sampling with accuracy guarantees. In: Eliassi-Rad T, Ungar L, Craven M et al (eds) Proceedings of the twelfth ACM SIGKDD international conference on knowledge discovery and data mining. ACM, Philadelphia, pp 767-772.
-
(2006)
Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 767-772
-
-
Wu, M.1
Jermaine, C.2
-
41
-
-
37549018049
-
Top 10 algorithms in data mining
-
Wu X, Kumar V, Ross Q et al (2008) Top 10 algorithms in data mining. Knowl Inf Syst 14(1): 1-37.
-
(2008)
Knowl Inf Syst
, vol.14
, Issue.1
, pp. 1-37
-
-
Wu, X.1
Kumar, V.2
Ross, Q.3
-
42
-
-
67349254647
-
Characterizing pattern preserving clustering
-
Xiong H, Steinbach M, Ruslim A et al (2008) Characterizing pattern preserving clustering. Knowl Inf Syst 19(3): 311-336.
-
(2008)
Knowl Inf Syst
, vol.19
, Issue.3
, pp. 311-336
-
-
Xiong, H.1
Steinbach, M.2
Ruslim, A.3
-
43
-
-
33749563831
-
K-means clustering versus validation measures: a data distribution perspective
-
T. Eliassi-Rad, L. Ungar, and M. Craven (Eds.), Philadelphia: ACM
-
Xiong H, Wu J, Chen J (2006) K-means clustering versus validation measures: a data distribution perspective. In: Eliassi-Rad T, Ungar L, Craven M et al (eds) Proceedings of the twelfth ACM SIGKDD international conference on knowledge discovery and data mining. ACM, Philadelphia, pp 779-784.
-
(2006)
Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 779-784
-
-
Xiong, H.1
Wu, J.2
Chen, J.3
-
44
-
-
65449130493
-
Local peculiarity factor and its application in outlier detection
-
Y. Li, B. Liu, and S. Sarawagi (Eds.), Las Vegas: ACM
-
Yang J, Zhong N, Yao Y et al (2008) Local peculiarity factor and its application in outlier detection. In: Li Y, Liu B, Sarawagi S (eds) Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, Las Vegas, pp 776-784.
-
(2008)
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 776-784
-
-
Yang, J.1
Zhong, N.2
Yao, Y.3
-
45
-
-
85132247975
-
FindOut: finding outliers in very large Datasets
-
Yu D, Sheikholeslami G, Zhang A (2000) FindOut: finding outliers in very large Datasets. Knowl Inf Syst 4(4): 387-412.
-
(2000)
Knowl Inf Syst
, vol.4
, Issue.4
, pp. 387-412
-
-
Yu, D.1
Sheikholeslami, G.2
Zhang, A.3
-
46
-
-
0030157145
-
BIRCH: an efficient data clustering method for very large databases
-
H. Jagadish and I. Mumick (Eds.), Montreal: ACM
-
Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: an efficient data clustering method for very large databases. In: Jagadish H, Mumick I (eds) Proceedings of the 1996 ACM SIGMOD international conference on management of data. ACM, Montreal, pp 103-114.
-
(1996)
Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data
, pp. 103-114
-
-
Zhang, T.1
Ramakrishnan, R.2
Livny, M.3
|