메뉴 건너뛰기




Volumn 1, Issue , 2012, Pages 233-240

Multiple kernel learning from noisy labels by stochastic programming

Author keywords

[No Author keywords available]

Indexed keywords

CLASS ASSIGNMENTS; DATA SETS; EMPIRICAL STUDIES; FAST CONVERGENCE RATE; MINIMAX; MULTIPLE KERNEL LEARNING; NOISY LABELS; NUMBER OF ITERATIONS; OPTIMIZATION PROBLEMS; SUB-OPTIMAL PERFORMANCE; TRAINING EXAMPLE;

EID: 84867135321     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (18)

References (32)
  • 1
    • 46249088758 scopus 로고    scopus 로고
    • Consistency of the group lasso and multiple kernel learning
    • Bach, Francis R. Consistency of the group lasso and multiple kernel learning. JMLR, 9:1179-1225, 2008.
    • (2008) JMLR , vol.9 , pp. 1179-1225
    • Bach, F.R.1
  • 2
    • 14344252374 scopus 로고    scopus 로고
    • Multiple kernel learning, conic duality, and the smo algorithm
    • Bach, Francis R., Lanckriet, Gert R. G., and Jordan, Michael I. Multiple kernel learning, conic duality, and the smo algorithm. In ICML, 2004.
    • (2004) ICML
    • Bach, F.R.1    Lanckriet, G.R.G.2    Jordan, M.I.3
  • 4
    • 77956523234 scopus 로고    scopus 로고
    • Robust formulations for handling uncertainty in kernel matrices
    • Bhadra, Sahely, Bhattacharya, Sourangshu, Bhattacharyya, Chiranjib, and Ben-Tal, Aharon. Robust formulations for handling uncertainty in kernel matrices. In ICML, pp. 71-78, 2010.
    • (2010) ICML , pp. 71-78
    • Bhadra, S.1    Bhattacharya, S.2    Bhattacharyya, C.3    Ben-Tal, A.4
  • 5
    • 84867112504 scopus 로고    scopus 로고
    • Support vector machines under adversarial label noise
    • Biggio, Battista, Nelson, Blaine, and Laskov, Pavel. Support vector machines under adversarial label noise. In ACML, pp. 97-112, 2011.
    • (2011) ACML , pp. 97-112
    • Biggio, B.1    Nelson, B.2    Laskov, P.3
  • 7
    • 77958134983 scopus 로고    scopus 로고
    • L2 regularization for learning kernels
    • Cortes, Corinna, Mohri, Mehryar, and Rostamizadeh, Afshin. L2 regularization for learning kernels. In UAI, pp. 109-116, 2009.
    • (2009) UAI , pp. 109-116
    • Cortes, C.1    Mohri, M.2    Rostamizadeh, A.3
  • 8
    • 77956505061 scopus 로고    scopus 로고
    • Two-stage learning kernel algorithms
    • Cortes, Corinna, Mohri, Mehryar, and Rostamizadeh, Afshin. Two-stage learning kernel algorithms. In ICML, pp. 239-246, 2010a.
    • (2010) ICML , pp. 239-246
    • Cortes, C.1    Mohri, M.2    Rostamizadeh, A.3
  • 9
    • 77956550918 scopus 로고    scopus 로고
    • Generalization bounds for learning kernels
    • Cortes, Corinna, Mohri, Mehryar, and Rostamizadeh, Afshin. Generalization bounds for learning kernels. In ICML, pp. 247-254, 2010b.
    • (2010) ICML , pp. 247-254
    • Cortes, C.1    Mohri, M.2    Rostamizadeh, A.3
  • 11
    • 84864067385 scopus 로고    scopus 로고
    • Support vector machines on a budget
    • Dekel, Ofer and Singer, Yoram. Support vector machines on a budget. In NIPS, pp. 345-352, 2006.
    • (2006) NIPS , pp. 345-352
    • Dekel, O.1    Singer, Y.2
  • 12
    • 80053134215 scopus 로고    scopus 로고
    • Robust metric learning by smooth optimization
    • Huang, Kaizhu, Jin, Rong, Xu, Zenglin, and Liu, Chen-Lin. Robust metric learning by smooth optimization. In UAI, 2010.
    • (2010) UAI
    • Huang, K.1    Jin, R.2    Xu, Z.3    Liu, C.-L.4
  • 14
    • 84858738634 scopus 로고    scopus 로고
    • Efficient and accurate 1p-norm multiple kernel learning
    • Kloft, Marius, Brefeld, Ulf, Sonnenburg, Soeren, Laskov, Pavel, Müller, Klaus-Robert, and Zien, Alexander. Efficient and accurate 1p-norm multiple kernel learning. In NIPS, pp. 997-1005, 2009.
    • (2009) NIPS , pp. 997-1005
    • Kloft, M.1    Brefeld, U.2    Sonnenburg, S.3    Laskov, P.4    Müller, K.-R.5    Zien, A.6
  • 15
    • 8844278523 scopus 로고    scopus 로고
    • Learning the kernel matrix with semidefinite programming
    • Lanckriet, Gert, Cristianini, Nello, Bartlett, Peter, and Ghaoui, Laurent E. Learning the kernel matrix with semidefinite programming. JMLR, 5:27-72, 2004.
    • (2004) JMLR , vol.5 , pp. 27-72
    • Lanckriet, G.1    Cristianini, N.2    Bartlett, P.3    Ghaoui, L.E.4
  • 16
    • 1242341002 scopus 로고    scopus 로고
    • Estimating a kernel fisher discriminant in the presence of label noise
    • Lawrence, Neil D. and Schölkopf, Bernhard. Estimating a kernel fisher discriminant in the presence of label noise. In ICML, pp. 306-313, 2001.
    • (2001) ICML , pp. 306-313
    • Lawrence, N.D.1    Schölkopf, B.2
  • 17
    • 23244434257 scopus 로고    scopus 로고
    • Learning the kernel function via regularization
    • Micchelli, Charles A. and Pontil, Massimiliano. Learning the kernel function via regularization. JMLR, 6:1099-1125, 2005.
    • (2005) JMLR , vol.6 , pp. 1099-1125
    • Micchelli, C.A.1    Pontil, M.2
  • 19
    • 14944353419 scopus 로고    scopus 로고
    • Prox-method with rate of convergence o(1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems
    • Nemirovski, Arkadi. Prox-method with rate of convergence o(1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM Journal on Optimization, 15:229-251, 2005.
    • (2005) SIAM Journal on Optimization , vol.15 , pp. 229-251
    • Nemirovski, A.1
  • 23
    • 31844433634 scopus 로고    scopus 로고
    • A model for handling approximate, noisy or incomplete labeling in text classification
    • Ramakrishnan, Ganesh, Chitrapura, Krishna Prasad, Krishnapuram, Raghu, and Bhattacharyya, Pushpak. A model for handling approximate, noisy or incomplete labeling in text classification. In ICML, 2005.
    • (2005) ICML
    • Ramakrishnan, G.1    Chitrapura, K.P.2    Krishnapuram, R.3    Bhattacharyya, P.4
  • 26
    • 84864066318 scopus 로고    scopus 로고
    • A general and efficient multiple kernel learning algorithm
    • Sonnenburg, Sören, Rätsch, Gunnar, and Schäfer, Christin. A general and efficient multiple kernel learning algorithm. In NIPS, pp. 1273-1280, 2006.
    • (2006) NIPS , pp. 1273-1280
    • Sonnenburg, S.1    Rätsch, G.2    Schäfer, C.3
  • 28
    • 33750691986 scopus 로고    scopus 로고
    • Robust support vector machine training via convex outlier ablation
    • Xu, Linli, Crammer, Koby, and Schuurmans, Dale. Robust support vector machine training via convex outlier ablation. In AAAI, pp. 536-542, 2006.
    • (2006) AAAI , pp. 536-542
    • Xu, L.1    Crammer, K.2    Schuurmans, D.3
  • 29
    • 77956547440 scopus 로고    scopus 로고
    • Simple and efficient multiple kernel learning by group lasso
    • Xu, Zenglin, Jin, Rong, Yang, Haiqin, King, Irwin, and Lyu, Michael R. Simple and efficient multiple kernel learning by group lasso. In ICML, pp. 1175-1182, 2010.
    • (2010) ICML , pp. 1175-1182
    • Xu, Z.1    Jin, R.2    Yang, H.3    King, I.4    Lyu, M.R.5
  • 30
    • 77956551582 scopus 로고    scopus 로고
    • Learning from noisy side information by generalized maximum entropy model
    • Yang, Tianbao, Jin, Rong, and Jain, Anil K. Learning from noisy side information by generalized maximum entropy model. In ICML, pp. 1199-1206, 2010.
    • (2010) ICML , pp. 1199-1206
    • Yang, T.1    Jin, R.2    Jain, A.K.3
  • 31
    • 77956500822 scopus 로고    scopus 로고
    • Generalization bounds for learning the kernel problem
    • Ying, Yiming and Campbell, Colin. Generalization bounds for learning the kernel problem. In COLT, 2009.
    • (2009) COLT
    • Ying, Y.1    Campbell, C.2
  • 32
    • 85162045006 scopus 로고    scopus 로고
    • Relaxed clipping: A global training method for robust regression and classification
    • Yu, Yaoliang, Yang, Min, Xu, Linli, White, Martha, and Schuurmans, Dale. Relaxed clipping: A global training method for robust regression and classification. In NIPS, pp. 2532-2540, 2011.
    • (2011) NIPS , pp. 2532-2540
    • Yu, Y.1    Yang, M.2    Xu, L.3    White, M.4    Schuurmans, D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.