-
2
-
-
0002948319
-
Algorithms for Mining Distance-Based Outliers in Large Datasets
-
New York, NY
-
Knorr, E. M., Ng,R. T. :Algorithms for Mining Distance-Based Outliers in Large Datasets. In: Proceedings of the 24th International Conference on Very Large Data Bases, New York, NY.1998, pp. 392-403
-
(1998)
Proceedings of the 24th International Conference on Very Large Data Bases
, pp. 392-403
-
-
Knorr, E.M.1
Ng, R.T.2
-
4
-
-
77952380096
-
Mining distance based outliers in near linear time with randomization and a simple pruning rule
-
Bay, S. D., & Schwabacher, M.:Mining distance based outliers in near linear time with randomization and a simple pruning rule. In: Proceedings of KDD03.2003
-
(2003)
Proceedings of KDD03
-
-
Bay, S.D.1
Schwabacher, M.2
-
5
-
-
85039571873
-
A Linear Method for Deviation Detection in Large Databases
-
Portland, OR, AAAI Press
-
Arning,A., Agrawal,R., Raghavan,P.: A Linear Method for Deviation Detection in Large Databases. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, AAAI Press.1996, pp. 164-169
-
(1996)
Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining
, pp. 164-169
-
-
Arning, A.1
Agrawal, R.2
Raghavan, P.3
-
6
-
-
85133833928
-
LOF: Identifying density-based local outliers
-
Dallas, Texas
-
Breunig,M.M., Kriegel, H.P., Ng, R.T., Sander, J. :LOF: Identifying density-based local outliers. In: Proceedings of SIGMOD_00, Dallas, Texas.2000, pp.427-438
-
(2000)
Proceedings of SIGMOD_00
, pp. 427-438
-
-
Breunig, M.M.1
Kriegel, H.P.2
Ng, R.T.3
Sander, J.4
-
7
-
-
1542299056
-
GLOF:A New Method for Mining Local Outlier
-
Jiang,S., Li,Q. ,Li,K.,Wang,H., Meng Z. :GLOF:A New Method for Mining Local Outlier. In: Proceedings of ICMLC2003,2003, pp. 157-162
-
(2003)
Proceedings of ICMLC2003
, pp. 157-162
-
-
Jiang, S.1
Li, Q.2
Li, K.3
Wang, H.4
Meng, Z.5
-
9
-
-
0035336998
-
Two-phase clustering process for outliers detection
-
Jiang, M. F., Tseng, S. S., & Su, C. M. :Two-phase clustering process for outliers detection. Pattern Recognition Letters.2001, pp. 691-700
-
(2001)
Pattern Recognition Letters
, pp. 691-700
-
-
Jiang, M.F.1
Tseng, S.S.2
Su, C.M.3
-
10
-
-
85132247975
-
Findout: Finding out outliers in large datasets
-
Yu, D., Sheikholeslami, G., & Zhang, A.: Findout: finding out outliers in large datasets. Knowledge and Information Systems.2002, pp. 387-412
-
(2002)
Knowledge and Information Systems
, pp. 387-412
-
-
Yu, D.1
Sheikholeslami, G.2
Zhang, A.3
-
11
-
-
0037410488
-
Discovering cluster-based local outliers
-
He,Z. , Xu,X., Deng,S. : Discovering cluster-based local outliers Pattern Recognition Letters. 2003, pp.1651-1660
-
(2003)
Pattern Recognition Letters
, pp. 1651-1660
-
-
He, Z.1
Xu, X.2
Deng, S.3
-
15
-
-
84864859588
-
Outlier detection using replicator neural networks
-
Aix-en-Provence, France
-
Harkins, S., He, H., Willams, G.J., Baster, R.A.: Outlier detection using replicator neural networks. In: Proceedings of the 4th International Conference on Data Warehousing and Knowledge Discovery, Aix-en-Provence, France.2002, pp. 170-180
-
(2002)
Proceedings of the 4th International Conference on Data Warehousing and Knowledge Discovery
, pp. 170-180
-
-
Harkins, S.1
He, H.2
Willams, G.J.3
Baster, R.A.4
-
16
-
-
4143149628
-
A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data
-
Eskin,E., Arnold,A., Prerau,M., Portnoy, L. and Stolfo, S. :A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data. In Data Mining for Security Applications.2002
-
(2002)
Data Mining for Security Applications
-
-
Eskin, E.1
Arnold, A.2
Prerau, M.3
Portnoy, L.4
Stolfo, S.5
|