-
1
-
-
0347318052
-
The AMP-activated protein kinase cascade-a unifying system for energy control
-
Carling D. The AMP-activated protein kinase cascade-a unifying system for energy control. Trends Biochem Sci. 2004;29:18-24.
-
(2004)
Trends Biochem Sci.
, vol.29
, pp. 18-24
-
-
Carling, D.1
-
2
-
-
0031007065
-
The AMP-activated protein kinase-fuel gauge of the mammalian cell?
-
Hardie DG, Carling D. The AMP-activated protein kinase-fuel gauge of the mammalian cell? Eur J Biochem. 1997;246:259-273.
-
(1997)
Eur J Biochem.
, vol.246
, pp. 259-273
-
-
Hardie, D.G.1
Carling, D.2
-
3
-
-
33745225026
-
AMP-activated protein kinase-development of the energy sensor concept
-
Hardie DG, Hawley SA, Scott JW. AMP-activated protein kinase-development of the energy sensor concept. J Physiol. 2006;574:7-15.
-
(2006)
J Physiol.
, vol.574
, pp. 7-15
-
-
Hardie, D.G.1
Hawley, S.A.2
Scott, J.W.3
-
5
-
-
34648828532
-
AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy
-
Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol. 2007;8:774-785.
-
(2007)
Nat Rev Mol Cell Biol.
, vol.8
, pp. 774-785
-
-
Hardie, D.G.1
-
6
-
-
23044432463
-
Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase
-
Hawley SA, Pan DA, Mustard KJ, et al. Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2005;2:9-19.
-
(2005)
Cell Metab.
, vol.2
, pp. 9-19
-
-
Hawley, S.A.1
Pan, D.A.2
Mustard, K.J.3
-
7
-
-
23044437445
-
Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells
-
Woods A, Dickerson K, Heath R, et al. Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2005;2:21-33.
-
(2005)
Cell Metab.
, vol.2
, pp. 21-33
-
-
Woods, A.1
Dickerson, K.2
Heath, R.3
-
8
-
-
0034773404
-
Role of AMP-activated protein kinase in mechanism of metformin action
-
Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108:1167-1174.
-
(2001)
J Clin Invest.
, vol.108
, pp. 1167-1174
-
-
Zhou, G.1
Myers, R.2
Li, Y.3
-
9
-
-
0032495530
-
A serine/threonine kinase gene defective in Peutz-Jeghers syndrome
-
Hemminki A, Markie D, Tomlinson I, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature. 1998; 391:184-187.
-
(1998)
Nature.
, vol.391
, pp. 184-187
-
-
Hemminki, A.1
Markie, D.2
Tomlinson, I.3
-
10
-
-
0031974516
-
Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase
-
Jenne DE, Reimann H, Nezu J, et al. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet. 1998;18:38-43.
-
(1998)
Nat Genet.
, vol.18
, pp. 38-43
-
-
Jenne, D.E.1
Reimann, H.2
Nezu, J.3
-
11
-
-
0038614742
-
Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD
-
Baas AF, Boudeau J, Sapkota GP, et al. Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO J. 2003;22:3062-3072.
-
(2003)
EMBO J.
, vol.22
, pp. 3062-3072
-
-
Baas, A.F.1
Boudeau, J.2
Sapkota, G.P.3
-
12
-
-
0141753981
-
MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm
-
Boudeau J, Baas AF, Deak M, et al. MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J. 2003;22:5102-5114.
-
(2003)
EMBO J.
, vol.22
, pp. 5102-5114
-
-
Boudeau, J.1
Baas, A.F.2
Deak, M.3
-
13
-
-
44949122687
-
STRADalpha regulates LKB1 localization by blocking access to importin-alpha, and by association with Crm1 and exportin-7
-
Dorfman J, Macara IG. STRADalpha regulates LKB1 localization by blocking access to importin-alpha, and by association with Crm1 and exportin-7. Mol Biol Cell. 2008;19:1614-1626.
-
(2008)
Mol Biol Cell.
, vol.19
, pp. 1614-1626
-
-
Dorfman, J.1
McAra, I.G.2
-
14
-
-
12144287284
-
LKB1 is a master kinase that activates 13 kinases of theAMPKsubfamily, including MARK/ PAR-1
-
Lizcano JM, Göransson O, Toth R, et al. LKB1 is a master kinase that activates 13 kinases of theAMPKsubfamily, including MARK/ PAR-1. EMBO J. 2004;23:833-843.
-
(2004)
EMBO J.
, vol.23
, pp. 833-843
-
-
Lizcano, J.M.1
Göransson, O.2
Toth, R.3
-
15
-
-
10744230065
-
LKB1 is the upstream kinase in the AMP-activated protein kinase cascade
-
Woods A, Johnstone SR, Dickerson K, et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol. 2003;13:2004-2008.
-
(2003)
Curr Biol.
, vol.13
, pp. 2004-2008
-
-
Woods, A.1
Johnstone, S.R.2
Dickerson, K.3
-
16
-
-
56749176442
-
LKB1; linking cell structure and tumor suppression
-
Hezel AF, Bardeesy N. LKB1; linking cell structure and tumor suppression. Oncogene. 2008;27:6908-6919.
-
(2008)
Oncogene.
, vol.27
, pp. 6908-6919
-
-
Hezel, A.F.1
Bardeesy, N.2
-
17
-
-
67749111502
-
The LKB1-AMPK pathway: Metabolism and growth control in tumour suppression
-
Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer. 2009; 9:563-575.
-
(2009)
Nat Rev Cancer.
, vol.9
, pp. 563-575
-
-
Shackelford, D.B.1
Shaw, R.J.2
-
18
-
-
0345107247
-
Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade
-
Hawley SA, Boudeau J, Reid JL, et al. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol. 2003;2:28.
-
(2003)
J Biol.
, vol.2
, pp. 28
-
-
Hawley, S.A.1
Boudeau, J.2
Reid, J.L.3
-
19
-
-
1542618348
-
The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress
-
Shaw RJ, Kosmatka M, Bardeesy N, et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A. 2004;101:3329-3335.
-
(2004)
Proc Natl Acad Sci U S A.
, vol.101
, pp. 3329-3335
-
-
Shaw, R.J.1
Kosmatka, M.2
Bardeesy, N.3
-
20
-
-
0033673203
-
Mechanism by which metformin reduces glucose production in type 2 diabetes
-
Hundal RS, Krssak M, Dufour S, et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes. 2000;49:2063-2069.
-
(2000)
Diabetes.
, vol.49
, pp. 2063-2069
-
-
Hundal, R.S.1
Krssak, M.2
Dufour, S.3
-
21
-
-
84855603512
-
Cellular and molecular mechanisms of metformin: An overview
-
Viollet B, Guigas B, Sanz GN, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond). 2012;122:253-270.
-
(2012)
Clin Sci (Lond).
, vol.122
, pp. 253-270
-
-
Viollet, B.1
Guigas, B.2
Sanz, G.N.3
Leclerc, J.4
Foretz, M.5
Andreelli, F.6
-
22
-
-
0034659785
-
Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain
-
Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000;348(Pt 3):607-614.
-
(2000)
Biochem J.
, vol.348
, Issue.PART 3
, pp. 607-614
-
-
Owen, M.R.1
Doran, E.2
Halestrap, A.P.3
-
23
-
-
28844433635
-
The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin
-
Shaw RJ, Lamia KA, Vasquez D, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 2005;310:1642-1646.
-
(2005)
Science.
, vol.310
, pp. 1642-1646
-
-
Shaw, R.J.1
Lamia, K.A.2
Vasquez, D.3
-
24
-
-
38049067500
-
Single nucleotide polymorphisms in genes encoding LKB1 (STK11), TORC2 (CRTC2) and AMPK alpha2-subunit (PRKAA2) and risk of type 2 diabetes
-
Keshavarz P, Inoue H, Nakamura N, Yoshikawa T, Tanahashi T, Itakura M. Single nucleotide polymorphisms in genes encoding LKB1 (STK11), TORC2 (CRTC2) and AMPK alpha2-subunit (PRKAA2) and risk of type 2 diabetes. Mol Genet Metab. 2008;93: 200-209.
-
(2008)
Mol Genet Metab.
, vol.93
, pp. 200-209
-
-
Keshavarz, P.1
Inoue, H.2
Nakamura, N.3
Yoshikawa, T.4
Tanahashi, T.5
Itakura, M.6
-
25
-
-
40849126625
-
Ovulatory response to treatment of polycystic ovary syndrome is associated with a polymorphism in the STK11 gene
-
Legro RS, Barnhart HX, Schlaff WD, et al. Ovulatory response to treatment of polycystic ovary syndrome is associated with a polymorphism in the STK11 gene. J Clin Endocrinol Metab. 2008;93: 792-800.
-
(2008)
J Clin Endocrinol Metab.
, vol.93
, pp. 792-800
-
-
Legro, R.S.1
Barnhart, H.X.2
Schlaff, W.D.3
-
26
-
-
77954933558
-
Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state
-
Foretz M, Hébrard S, Leclerc J, et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest. 2010;120: 2355-2369.
-
(2010)
J Clin Invest.
, vol.120
, pp. 2355-2369
-
-
Foretz, M.1
Hébrard, S.2
Leclerc, J.3
-
27
-
-
77955287742
-
Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner
-
Kalender A, Selvaraj A, Kim SY, et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 2010;11:390-401.
-
(2010)
Cell Metab.
, vol.11
, pp. 390-401
-
-
Kalender, A.1
Selvaraj, A.2
Kim, S.Y.3
-
28
-
-
84873707522
-
Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP
-
Miller RA, Chu Q, Xie J, Foretz M, Viollet B, Birnbaum MJ. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature. 2013;494:256-260.
-
(2013)
Nature.
, vol.494
, pp. 256-260
-
-
Miller, R.A.1
Chu, Q.2
Xie, J.3
Foretz, M.4
Viollet, B.5
Birnbaum, M.J.6
-
29
-
-
79952117625
-
SnapShot: Inositol phosphates
-
Hatch AJ, York JD. SnapShot: inositol phosphates. Cell. 2010;143: 1030.
-
(2010)
Cell.
, vol.143
, pp. 1030
-
-
Hatch, A.J.1
York, J.D.2
-
30
-
-
0035347166
-
Back in the water: The return of the inositol phosphates
-
Irvine RF, Schell MJ. Back in the water: the return of the inositol phosphates. Nat Rev Mol Cell Biol. 2001;2:327-338.
-
(2001)
Nat Rev Mol Cell Biol.
, vol.2
, pp. 327-338
-
-
Irvine, R.F.1
Schell, M.J.2
-
31
-
-
0035956860
-
Mammalian inositol polyphosphate multikinase synthesizes inositol 1,4,5-trisphosphate and an inositol pyrophosphate
-
Saiardi A, Nagata E, Luo HR, et al. Mammalian inositol polyphosphate multikinase synthesizes inositol 1,4,5-trisphosphate and an inositol pyrophosphate. Proc Natl Acad Sci U S A. 2001;98:2306-2311.
-
(2001)
Proc Natl Acad Sci U S A.
, vol.98
, pp. 2306-2311
-
-
Saiardi, A.1
Nagata, E.2
Luo, H.R.3
-
32
-
-
0942290439
-
How versatile are inositol phosphate kinases?
-
Shears SB. How versatile are inositol phosphate kinases? Biochem J. 2004;377:265-280.
-
(2004)
Biochem J.
, vol.377
, pp. 265-280
-
-
Shears, S.B.1
-
33
-
-
0020643801
-
Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate
-
Streb H, Irvine RF, Berridge MJ, Schulz I. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature. 1983;306:67-69.
-
(1983)
Nature.
, vol.306
, pp. 67-69
-
-
Streb, H.1
Irvine, R.F.2
Berridge, M.J.3
Schulz, I.4
-
34
-
-
23844551508
-
Increased levels of inositol hexakisphosphate (InsP6) protect HEK293 cells from tumor necrosis factor (alpha)-and Fas-induced apoptosis
-
Verbsky J, Majerus PW. Increased levels of inositol hexakisphosphate (InsP6) protect HEK293 cells from tumor necrosis factor (alpha)-and Fas-induced apoptosis. J Biol Chem. 2005;280: 29263-29268.
-
(2005)
J Biol Chem.
, vol.280
, pp. 29263-29268
-
-
Verbsky, J.1
Majerus, P.W.2
-
35
-
-
84885086001
-
Inositol polyphosphate multikinase is a transcriptional coactivator required for immediate early gene induction
-
Xu R, Paul BD, Smith DR, et al. Inositol polyphosphate multikinase is a transcriptional coactivator required for immediate early gene induction. Proc Natl Acad Sci U S A. 2013;110:16181-16186.
-
(2013)
Proc Natl Acad Sci U S A.
, vol.110
, pp. 16181-16186
-
-
Xu, R.1
Paul, B.D.2
Smith, D.R.3
-
36
-
-
84876130866
-
Inositol polyphosphate multikinase is a coactivator of p53-mediated transcription and cell death
-
Xu R, Sen N, Paul BD, et al. Inositol polyphosphate multikinase is a coactivator of p53-mediated transcription and cell death. Sci Signal. 2013;6:ra22.
-
(2013)
Sci Signal.
, vol.6
-
-
Xu, R.1
Sen, N.2
Paul, B.D.3
-
37
-
-
0037205048
-
The phosphoinositide 3-kinase pathway
-
Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296:1655-1657.
-
(2002)
Science.
, vol.296
, pp. 1655-1657
-
-
Cantley, L.C.1
-
38
-
-
79551565620
-
Amino acid signaling to mTOR mediated by inositol polyphosphate multikinase
-
Kim S, Kim SF, Maag D, et al. Amino acid signaling to mTOR mediated by inositol polyphosphate multikinase. Cell Metab. 2011; 13:215-221.
-
(2011)
Cell Metab.
, vol.13
, pp. 215-221
-
-
Kim, S.1
Kim, S.F.2
Maag, D.3
-
39
-
-
79951885087
-
Inositol polyphosphate multikinase is a physiologic PI3-kinase that activates Akt/PKB
-
Maag D, Maxwell MJ, Hardesty DA, et al. Inositol polyphosphate multikinase is a physiologic PI3-kinase that activates Akt/PKB. Proc Natl Acad Sci U S A. 2011;108:1391-1396.
-
(2011)
Proc Natl Acad Sci U S A.
, vol.108
, pp. 1391-1396
-
-
Maag, D.1
Maxwell, M.J.2
Hardesty, D.A.3
-
40
-
-
84862884630
-
Direct modification and activation of a nuclear receptor-PIP(2) complex by the inositol lipid kinase IPMK
-
Blind RD, Suzawa M, Ingraham HA. Direct modification and activation of a nuclear receptor-PIP(2) complex by the inositol lipid kinase IPMK. Sci Signal 2012;5:ra44.
-
(2012)
Sci Signal
, vol.5
-
-
Blind, R.D.1
Suzawa, M.2
Ingraham, H.A.3
-
41
-
-
84862908394
-
AMP-activated protein kinase is physiologically regulated by inositol polyphosphate multikinase
-
Bang S, Kim S, Dailey MJ, et al. AMP-activated protein kinase is physiologically regulated by inositol polyphosphate multikinase. Proc Natl Acad Sci U S A. 2012;109:616-620.
-
(2012)
Proc Natl Acad Sci U S A.
, vol.109
, pp. 616-620
-
-
Bang, S.1
Kim, S.2
Dailey, M.J.3
-
42
-
-
79957904163
-
Nutrient amino acids signal to mTOR via inositol polyphosphate multikinase
-
Kim S, Snyder SH. Nutrient amino acids signal to mTOR via inositol polyphosphate multikinase. Cell Cycle. 2011;10:1708-1710.
-
(2011)
Cell Cycle.
, vol.10
, pp. 1708-1710
-
-
Kim, S.1
Snyder, S.H.2
-
43
-
-
84863096119
-
Striatum specific protein, Rhes regulates AKT pathway
-
Bang S, Steenstra C, Kim SF. Striatum specific protein, Rhes regulates AKT pathway. Neurosci Lett. 2012;521:142-147.
-
(2012)
Neurosci Lett.
, vol.521
, pp. 142-147
-
-
Bang, S.1
Steenstra, C.2
Kim, S.F.3
-
44
-
-
0012785395
-
Metformin reverses fatty liver disease in obese, leptin-deficient mice
-
Lin HZ, Yang SQ, Chuckaree C, Kuhajda F, Ronnet G, Diehl AM. Metformin reverses fatty liver disease in obese, leptin-deficient mice. Nat Med. 2000;6:998-1003.
-
(2000)
Nat Med.
, vol.6
, pp. 998-1003
-
-
Lin, H.Z.1
Yang, S.Q.2
Chuckaree, C.3
Kuhajda, F.4
Ronnet, G.5
Diehl, A.M.6
-
45
-
-
36448947507
-
Requirement of inositol pyrophosphates for full exocytotic capacity in pancreatic beta cells
-
Illies C, Gromada J, Fiume R, Leibiger B, Yu J, Juhl K, Yang SN, Barma DK, Falck JR, Saiardi A, Barker CJ, Berggren PO. Requirement of inositol pyrophosphates for full exocytotic capacity in pancreatic beta cells. Science. 2007;318:1299-1302.
-
(2007)
Science.
, vol.318
, pp. 1299-1302
-
-
Illies, C.1
Gromada, J.2
Fiume, R.3
Leibiger, B.4
Yu, J.5
Juhl, K.6
Yang, S.N.7
Barma, D.K.8
Falck, J.R.9
Saiardi, A.10
Barker, C.J.11
Berggren, P.O.12
-
46
-
-
3843133857
-
The IHPK1 gene is disrupted at the 3p21.31 breakpoint of t(3;9) in a family with type 2 diabetes mellitus
-
Kamimura J, Wakui K, Kadowaki H, et al. The IHPK1 gene is disrupted at the 3p21.31 breakpoint of t(3;9) in a family with type 2 diabetes mellitus. J Hum Genet. 2004;49:360-365.
-
(2004)
J Hum Genet.
, vol.49
, pp. 360-365
-
-
Kamimura, J.1
Wakui, K.2
Kadowaki, H.3
-
47
-
-
45549094869
-
Protein kinase Czeta-dependent LKB1 serine 428 phosphorylation increases LKB1 nucleus export and apoptosis in endothelial cells
-
Song P, Xie Z, Wu Y, Xu J, Dong Y, Zou MH. Protein kinase Czeta-dependent LKB1 serine 428 phosphorylation increases LKB1 nucleus export and apoptosis in endothelial cells. J Biol Chem. 2008;283:12446-12455.
-
(2008)
J Biol Chem.
, vol.283
, pp. 12446-12455
-
-
Song, P.1
Xie, Z.2
Wu, Y.3
Xu, J.4
Dong, Y.5
Zou, M.H.6
-
48
-
-
84859863112
-
Nucleocytoplasmic shuttling of human inositol phosphate multikinase is influenced by CK2 phosphorylation
-
Meyer R, Nalaskowski MM, Ehm P, et al. Nucleocytoplasmic shuttling of human inositol phosphate multikinase is influenced by CK2 phosphorylation. Biol Chem. 2012;393:149-160.
-
(2012)
Biol Chem.
, vol.393
, pp. 149-160
-
-
Meyer, R.1
Nalaskowski, M.M.2
Ehm, P.3
-
49
-
-
39449096289
-
Phosphorylation of LKB1 at serine 428 by protein kinase C-zeta is required for metformin-enhanced activation of the AMP-activated protein kinase in endothelial cells
-
Xie Z, Dong Y, Scholz R, Neumann D, Zou MH. Phosphorylation of LKB1 at serine 428 by protein kinase C-zeta is required for metformin-enhanced activation of the AMP-activated protein kinase in endothelial cells. Circulation. 2008;117:952-962.
-
(2008)
Circulation.
, vol.117
, pp. 952-962
-
-
Xie, Z.1
Dong, Y.2
Scholz, R.3
Neumann, D.4
Zou, M.H.5
-
50
-
-
84878759308
-
Phosphorylation of serine 399 in LKB1 protein short form by protein kinase Cζ is required for its nucleocytoplasmic transport and consequent AMP-activated protein kinase (AMPK) activation
-
Zhu H, Moriasi CM, Zhang M, Zhao Y, Zou MH. Phosphorylation of serine 399 in LKB1 protein short form by protein kinase Cζ is required for its nucleocytoplasmic transport and consequent AMP-activated protein kinase (AMPK) activation. J Biol Chem. 2013;288:16495-16505.
-
(2013)
J Biol Chem.
, vol.288
, pp. 16495-16505
-
-
Zhu, H.1
Moriasi, C.M.2
Zhang, M.3
Zhao, Y.4
Zou, M.H.5
|