메뉴 건너뛰기




Volumn 73, Issue 1-4, 2014, Pages 113-126

Mathematical modelling of burr height of the drilling process using a statistical-based multi-gene genetic programming approach

Author keywords

Burr height; Burr height prediction; Drilling; Over fitting

Indexed keywords

DRILLING; GENES; GENETIC PROGRAMMING; NEURAL NETWORKS; REGRESSION ANALYSIS; SURFACE ROUGHNESS;

EID: 84903279556     PISSN: 02683768     EISSN: 14333015     Source Type: Journal    
DOI: 10.1007/s00170-014-5817-4     Document Type: Article
Times cited : (40)

References (65)
  • 1
    • 74249115778 scopus 로고    scopus 로고
    • Application of soft computing techniques in machining performance prediction and optimization: A literature review
    • Chandrasekaran M et al (2010) Application of soft computing techniques in machining performance prediction and optimization: a literature review. Int J Adv Manuf Technol 46(5):445-464
    • (2010) Int J Adv Manuf Technol , vol.46 , Issue.5 , pp. 445-464
    • Chandrasekaran, M.1
  • 2
    • 84881668314 scopus 로고    scopus 로고
    • A new hybrid differential evolution algorithm for the selection of optimal machining parameters in milling operations
    • Yildiz AR (2013) A new hybrid differential evolution algorithm for the selection of optimal machining parameters in milling operations. Appl Soft Comput 13(3):1561-1566
    • (2013) Appl Soft Comput , vol.13 , Issue.3 , pp. 1561-1566
    • Yildiz, A.R.1
  • 3
    • 84862696708 scopus 로고    scopus 로고
    • A comparative study of population-based optimization algorithms for turning operations
    • Yildiz AR (2012) A comparative study of population-based optimization algorithms for turning operations. Inf Sci: Int J 210:81-88
    • (2012) Inf Sci: Int J , vol.210 , pp. 81-88
    • Yildiz, A.R.1
  • 4
    • 84883213159 scopus 로고    scopus 로고
    • A new hybrid artificial bee colony algorithm for robust optimal design and manufacturing
    • Yildiz AR (2013) A new hybrid artificial bee colony algorithm for robust optimal design and manufacturing. Appl Soft Comput 13: 2906-2912
    • (2013) Appl Soft Comput , vol.13 , pp. 2906-2912
    • Yildiz, A.R.1
  • 5
    • 84868506920 scopus 로고    scopus 로고
    • Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach
    • Yildiz AR (2013) Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach. Inf Sci: Int J 220: 399-407
    • (2013) Inf Sci: Int J , vol.220 , pp. 399-407
    • Yildiz, A.R.1
  • 6
    • 84881660978 scopus 로고    scopus 로고
    • Hybrid taguchi-differential evolution algorithm for optimization of multi-pass turning operations
    • Yildiz AR (2013) Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning operations. Appl Soft Comput 13(3):1433-1439
    • (2013) Appl Soft Comput , vol.13 , Issue.3 , pp. 1433-1439
    • Yildiz, A.R.1
  • 7
    • 84872494306 scopus 로고    scopus 로고
    • Cuckoo search algorithm for the selection of optimal machining parameters in milling operations
    • Yildiz AR (2013) Cuckoo search algorithm for the selection of optimal machining parameters in milling operations. Int J Adv Manuf Technol 64(1-4):55-61
    • (2013) Int J Adv Manuf Technol , vol.64 , Issue.1-4 , pp. 55-61
    • Yildiz, A.R.1
  • 8
    • 61349105239 scopus 로고    scopus 로고
    • An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry
    • Yildiz AR (2009) An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry. J Mater Process Technol 209(6):2773-2780
    • (2009) J Mater Process Technol , vol.209 , Issue.6 , pp. 2773-2780
    • Yildiz, A.R.1
  • 9
    • 84883578713 scopus 로고    scopus 로고
    • Review of empirical modelling techniques for modelling of turning process
    • Garg A, Bhalerao Y, Tai K (2013) Review of empirical modelling techniques for modelling of turning process. Int J Model, Identif Control 20(2):121-129
    • (2013) Int J Model, Identif Control , vol.20 , Issue.2 , pp. 121-129
    • Garg, A.1    Bhalerao, Y.2    Tai, K.3
  • 10
    • 84887621431 scopus 로고    scopus 로고
    • Classification-driven model selection approach of genetic programming in modelling of turning process
    • Garg A, Rachmawati L, Tai K (2013) Classification-driven model selection approach of genetic programming in modelling of turning process. Int J Adv Manuf Technol 69(5-8):1137-1151
    • (2013) Int J Adv Manuf Technol , vol.69 , Issue.5-8 , pp. 1137-1151
    • Garg, A.1    Rachmawati, L.2    Tai, K.3
  • 11
    • 84897878463 scopus 로고    scopus 로고
    • State-of-The-art in empirical modelling of rapid prototyping processes
    • Garg A, Tai K, Savalani MM (2014) State-of-the-art in empirical modelling of rapid prototyping processes. Rapid Prototyp J 20(2): 164-178
    • (2014) Rapid Prototyp J , vol.20 , Issue.2 , pp. 164-178
    • Garg, A.1    Tai, K.2    Savalani, M.M.3
  • 12
    • 84859607829 scopus 로고    scopus 로고
    • Drilling of glass fiber/vinyl ester composites with fillers
    • Kumar S et al (2012) Drilling of glass fiber/vinyl ester composites with fillers. Mater Manuf Processes 27(3):314-319
    • (2012) Mater Manuf Processes , vol.27 , Issue.3 , pp. 314-319
    • Kumar, S.1
  • 13
    • 84876128124 scopus 로고    scopus 로고
    • An experimental investigation of hole geometry in friction drilling
    • Ozler L, Dogru N (2013) An experimental investigation of hole geometry in friction drilling. Mater Manuf Processes 28(4): 470-475
    • (2013) Mater Manuf Processes , vol.28 , Issue.4 , pp. 470-475
    • Ozler, L.1    Dogru, N.2
  • 14
    • 79961180987 scopus 로고    scopus 로고
    • Experimental investigation and analysis of thrust force in drilling hybrid metal matrix composites by coated carbide drills
    • Rajmohan T, Palanikumar K (2011) Experimental investigation and analysis of thrust force in drilling hybrid metal matrix composites by coated carbide drills. Mater Manuf Processes 26(8):961-968
    • (2011) Mater Manuf Processes , vol.26 , Issue.8 , pp. 961-968
    • Rajmohan, T.1    Palanikumar, K.2
  • 15
    • 84882701685 scopus 로고    scopus 로고
    • Metaheuristic algorithms in modeling and optimization
    • Gandomi AH et al (eds) Elsevier, Oxford
    • Gandomi AH et al (2013) Metaheuristic algorithms in modeling and optimization. In: Gandomi AH et al (eds) Metaheuristic applications in structures and infrastructures. Elsevier, Oxford, pp 1-24
    • (2013) Metaheuristic Applications in Structures and Infrastructures. , pp. 1-24
    • Gandomi, A.H.1
  • 16
    • 0032867919 scopus 로고    scopus 로고
    • Drill wear monitoring based on current signals
    • DOI 10.1016/S0043-1648(99)00130-1, PII S0043164899001301
    • Li X, Tso S (1999) Drill wear monitoring based on current signals. Wear 231(2):172-178 (Pubitemid 29466701)
    • (1999) Wear , vol.231 , Issue.2 , pp. 172-178
    • Li, X.1    Tso, S.K.2
  • 19
    • 0037402139 scopus 로고    scopus 로고
    • Drilling wear detection and classification using vibration signals and artificial neural network
    • Abu-Mahfouz I (2003) Drilling wear detection and classification using vibration signals and artificial neural network. Int J Mach Tools Manuf 43(7):707-720
    • (2003) Int J Mach Tools Manuf , vol.43 , Issue.7 , pp. 707-720
    • Abu-Mahfouz, I.1
  • 20
    • 34248996874 scopus 로고    scopus 로고
    • Evaluation of the performance of backpropagation and radial basis function neural networks in predicting the drill flank wear
    • Garg S, Pal SK, Chakraborty D (2007) Evaluation of the performance of backpropagation and radial basis function neural networks in predicting the drill flank wear. Neural Comput Applic 16(4):407-417
    • (2007) Neural Comput Applic , vol.16 , Issue.4 , pp. 407-417
    • Garg, S.1    Pal, S.K.2    Chakraborty, D.3
  • 21
    • 34047262880 scopus 로고    scopus 로고
    • Artificial neural network based prediction of drill flank wear from motor current signals
    • DOI 10.1016/j.asoc.2006.06.001, PII S1568494606000482
    • Patra K, Pal SK, Bhattacharyya K (2007) Artificial neural network based prediction of drill flank wear from motor current signals. Appl Soft Comput 7(3):929-935 (Pubitemid 46551928)
    • (2007) Applied Soft Computing Journal , vol.7 , Issue.3 , pp. 929-935
    • Patra, K.1    Pal, S.K.2    Bhattacharyya, K.3
  • 22
    • 53549111907 scopus 로고    scopus 로고
    • Development of artificial neural network models to study the effect of process parameters on burr size in drilling
    • Karnik S, Gaitonde V (2008) Development of artificial neural network models to study the effect of process parameters on burr size in drilling. Int J Adv Manuf Technol 39(5):439-453
    • (2008) Int J Adv Manuf Technol , vol.39 , Issue.5 , pp. 439-453
    • Karnik, S.1    Gaitonde, V.2
  • 23
    • 58249132418 scopus 로고    scopus 로고
    • A study of drilling performances with minimum quantity of lubricant using fuzzy logic rules
    • Nandi AK, Paulo Davim J (2009) A study of drilling performances with minimum quantity of lubricant using fuzzy logic rules. Mechatron 19(2):p. 218-232
    • (2009) Mechatron , vol.19 , Issue.2 , pp. 218-232
    • Nandi, A.K.1    Paulo Davim, J.2
  • 25
    • 29144452580 scopus 로고    scopus 로고
    • Modeling of tool wear in drilling by statistical analysis and artificial neural network
    • DOI 10.1016/j.jmatprotec.2005.04.072, PII S0924013605004929
    • Sanjay C, NeemaM, Chin C (2005)Modeling of tool wear in drilling by statistical analysis and artificial neural network. J Mater Process Technol 170(3):p. 494-500 (Pubitemid 41814554)
    • (2005) Journal of Materials Processing Technology , vol.170 , Issue.3 , pp. 494-500
    • Sanjay, C.1    Neema, M.L.2    Chin, C.W.3
  • 27
    • 43849109630 scopus 로고    scopus 로고
    • Evaluation of thrust force and surface roughness in drilling composite material using taguchi analysis and neural network
    • Tsao C, Hocheng H (2008) Evaluation of thrust force and surface roughness in drilling composite material using Taguchi analysis and neural network. J Mater Process Technol 203(1):p. 342-348
    • (2008) J Mater Process Technol , vol.203 , Issue.1 , pp. 342-348
    • Tsao, C.1    Hocheng, H.2
  • 30
    • 84858847764 scopus 로고    scopus 로고
    • Application of support vector machine regression in the forecast of oil-gas drilling cost
    • MA J-C, LIU T-S (2010) Application of support vector machine regression in the forecast of oil-gas drilling cost. J Xi'an Shiyou Univ (Nat Sci Ed) 3:p. 029
    • (2010) J Xi'an Shiyou Univ (Nat Sci Ed , vol.3 , pp. 029
    • Ma, J.-C.1    Liu, T.-S.2
  • 31
    • 33847675833 scopus 로고    scopus 로고
    • Genetic programming based formulation of rotation capacity of wide flange beams
    • DOI 10.1016/j.jcsr.2006.09.004, PII S0143974X06001994
    • Cevik A (2007) Genetic programming based formulation of rotation capacity of wide flange beams. J Constr Steel Res 63(7):884-893 (Pubitemid 46365935)
    • (2007) Journal of Constructional Steel Research , vol.63 , Issue.7 , pp. 884-893
    • Cevik, A.1
  • 32
    • 80052923685 scopus 로고    scopus 로고
    • Multi-stage genetic programming: A new strategy to nonlinear system modeling
    • Gandomi AH, Alavi AH (2011) Multi-stage genetic programming: a new strategy to nonlinear system modeling. Inf Sci 181(23):5227-5239
    • (2011) Inf Sci , vol.181 , Issue.23 , pp. 5227-5239
    • Gandomi, A.H.1    Alavi, A.H.2
  • 33
    • 77956952491 scopus 로고    scopus 로고
    • Genetic programming and orthogonal least squares: A hybrid approach to modeling the compressive strength of cfrp-confined concrete cylinders
    • Gandomi AH et al (2010) Genetic programming and orthogonal least squares: a hybrid approach to modeling the compressive strength of CFRP-confined concrete cylinders. J Mech Mater Struct 5(5):735-753
    • (2010) J Mech Mater Struct , vol.5 , Issue.5 , pp. 735-753
    • Gandomi, A.H.1
  • 34
    • 84896402736 scopus 로고    scopus 로고
    • A multi-gene genetic programming model for estimating stress-dependent soil water retention curves
    • Garg A, Garg A, Tai K (2014) A multi-gene genetic programming model for estimating stress-dependent soil water retention curves. Comput Geosci 18:45-56
    • (2014) Comput Geosci , vol.18 , pp. 45-56
    • Garg, A.1    Garg, A.2    Tai, K.3
  • 35
    • 84892838008 scopus 로고    scopus 로고
    • Estimation of factor of safety of rooted slope using an evolutionary approach
    • Garg A et al (2014) Estimation of factor of safety of rooted slope using an evolutionary approach. Ecol Eng 64:314-324
    • (2014) Ecol Eng , vol.64 , pp. 314-324
    • Garg, A.1
  • 36
    • 84896393469 scopus 로고    scopus 로고
    • An integrated srm-multi-gene genetic programming approach for prediction of factor of safety of 3-d soil nailed slopes
    • doi:10.1016/j.engappai.2013. 12.011
    • Garg A et al (2014) An integrated SRM-multi-gene genetic programming approach for prediction of factor of safety of 3-D soil nailed slopes. Eng Appl Artif Intell. doi:10.1016/j.engappai.2013. 12.011
    • (2014) Eng Appl Artif Intell.
    • Garg, A.1
  • 38
    • 84885571970 scopus 로고    scopus 로고
    • Selection of a robust experimental design for the effective modeling of nonlinear systems using genetic programming
    • IEEE
    • Garg A, Tai K (2013) Selection of a robust experimental design for the effective modeling of nonlinear systems using genetic programming. In Computational Intelligence and Data Mining (CIDM), 2013 I.E. Symposium on. IEEE
    • (2013) Computational Intelligence and Data Mining (CIDM), 2013 I.E. Symposium on.
    • Garg, A.1    Tai, K.2
  • 39
    • 84911997374 scopus 로고    scopus 로고
    • A hybrid\ text {m} 5 \ prime-genetic programming approach for ensuring greater trustworthiness of prediction ability in modelling of fdm process
    • in press: doi: 10.1007/s10845-013-0734-1
    • Garg A et al (2013) A hybrid\ text {M} 5 \ prime-genetic programming approach for ensuring greater trustworthiness of prediction ability in modelling of FDM process. J Intell Manuf 1-17, (in press: doi: 10.1007/s10845-013-0734-1
    • (2013) J Intell Manuf , pp. 1-17
    • Garg, A.1
  • 40
    • 84888298203 scopus 로고    scopus 로고
    • Performance evaluation of microbial fuel cell by artificial intelligence methods
    • Garg A et al (2014) Performance evaluation of microbial fuel cell by artificial intelligence methods. Expert Syst Appl 41(4):1389-1399
    • (2014) Expert Syst Appl , vol.41 , Issue.4 , pp. 1389-1399
    • Garg, A.1
  • 41
    • 84855986175 scopus 로고    scopus 로고
    • A new multi-gene genetic programming approach to nonlinear system modeling. Part i: Materials and structural engineering problems
    • Gandomi AH, Alavi AH (2012) A new multi-gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems. Neural Comput Appl 21(1):171-187
    • (2012) Neural Comput Appl , vol.21 , Issue.1 , pp. 171-187
    • Gandomi, A.H.1    Alavi, A.H.2
  • 42
    • 84906320878 scopus 로고    scopus 로고
    • Estimation of mechanical properties of nanomaterials using artificial intelligence methods
    • in press: doi: 10.1007/s00339-013-8192-3
    • Vijayaraghavan Vet al (2013) Estimation of mechanical properties of nanomaterials using artificial intelligence methods.Appl Phys A 1-9, (in press: doi: 10.1007/s00339-013-8192-3
    • (2013) Appl Phys A , pp. 1-9
    • Vijayaraghavan, V.1
  • 43
    • 84892927535 scopus 로고    scopus 로고
    • Measurement of properties of graphene sheets subjected to drilling operation using computer simulation
    • Vijayaraghavan V et al (2014) Measurement of properties of graphene sheets subjected to drilling operation using computer simulation. Measurement 50:50-62
    • (2014) Measurement , vol.50 , pp. 50-62
    • Vijayaraghavan, V.1
  • 44
    • 0036808510 scopus 로고    scopus 로고
    • Genetic programming and evolutionary generalization
    • DOI 10.1109/TEVC.2002.805038
    • Kushchu I (2002) Genetic programming and evolutionary generalization. Evol Comput, IEEE Trans 6(5):431-442 (Pubitemid 35327562)
    • (2002) IEEE Transactions on Evolutionary Computation , vol.6 , Issue.5 , pp. 431-442
    • Kushchu, I.1
  • 45
    • 0344861965 scopus 로고    scopus 로고
    • Model selection methodology in supervised learning with evolutionary computation
    • DOI 10.1016/S0303-2647(03)00143-6
    • Rowland JJ (2003) Model selection methodology in supervised learning with evolutionary computation. Biosystems 72(1):187-196 (Pubitemid 37464798)
    • (2003) BioSystems , vol.72 , Issue.1-2 , pp. 187-196
    • Rowland, J.J.1
  • 47
    • 78751612998 scopus 로고    scopus 로고
    • Reducing overfitting in manufacturing process modeling using a backward elimination based genetic programming
    • Chan KYet al (2011) Reducing overfitting in manufacturing process modeling using a backward elimination based genetic programming. Appl Soft Comput 11(2):1648-1656
    • (2011) Appl Soft Comput , vol.11 , Issue.2 , pp. 1648-1656
    • Chan, K.Y.1
  • 50
    • 79952394160 scopus 로고    scopus 로고
    • Gptips: An open source genetic programming toolbox for multigene symbolic regression
    • Searson DP, Leahy DE, Willis MJ (2010) GPTIPS: an open source genetic programming toolbox for multigene symbolic regression. Proc Int Multi 1:pp.77-80
    • (2010) Proc Int Multi , vol.1 , pp. 77-80
    • Searson, D.P.1    Leahy, D.E.2    Willis, M.J.3
  • 52
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461-464
    • (1978) Ann Stat , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 53
    • 0003074296 scopus 로고    scopus 로고
    • Support vector machines
    • Hearst MA et al (1998) Support vector machines. Intel Syst Their Appl, IEEE 13(4):18-28
    • (1998) Intel Syst Their Appl, IEEE , vol.13 , Issue.4 , pp. 18-28
    • Hearst, M.A.1
  • 55
    • 0345040882 scopus 로고    scopus 로고
    • Support vector machine applications in bioinformatics
    • Byvatov E, Schneider G (2003) Support vector machine applications in bioinformatics. Appl Bioinforma 2(2):67
    • (2003) Appl Bioinforma , vol.2 , Issue.2 , pp. 67
    • Byvatov, E.1    Schneider, G.2
  • 56
    • 74549139703 scopus 로고    scopus 로고
    • Predictive modelling of turning operations using response surface methodology, artificial neural networks and support vector regression
    • Gupta AK (2010) Predictive modelling of turning operations using response surface methodology, artificial neural networks and support vector regression. Int J Prod Res 418(3):763-778
    • (2010) Int J Prod Res , vol.418 , Issue.3 , pp. 763-778
    • Gupta, A.K.1
  • 59
    • 84870060410 scopus 로고    scopus 로고
    • Predicting the grain size and hardness of az91/sic nanocomposite by artificial neural networks
    • Asadi P et al (2012) Predicting the grain size and hardness of AZ91/SiC nanocomposite by artificial neural networks. Int J Adv Manuf Technol 63(9-12):1095-1107
    • (2012) Int J Adv Manuf Technol , vol.63 , Issue.9-12 , pp. 1095-1107
    • Asadi, P.1
  • 60
    • 80053562089 scopus 로고    scopus 로고
    • A neural network-based build time estimator for layer manufactured objects
    • Di Angelo L, Di Stefano P (2011) A neural network-based build time estimator for layer manufactured objects. Int J AdvanManuf Technol 57(1-4):215-224
    • (2011) Int J AdvanManuf Technol , vol.57 , Issue.1-4 , pp. 215-224
    • Di Angelo, L.1    Di Stefano, P.2
  • 61
    • 80053573850 scopus 로고    scopus 로고
    • The selection ofmilling parameters by the pso-based neural network modeling method
    • FarahnakianMet al (2011) The selection ofmilling parameters by the PSO-based neural network modeling method. Int J Adv Manuf Technol 57(1-4):49-60
    • (2011) Int J Adv Manuf Technol , vol.57 , Issue.1-4 , pp. 49-60
    • Farahnakian, M.1
  • 62
    • 84867097829 scopus 로고    scopus 로고
    • Prediction of abrasive wear rate of in situ cu-al 2o 3 nanocomposite using artificial neural networks
    • Fathy A, Megahed AA (2012) Prediction of abrasive wear rate of in situ Cu-Al 2O 3 nanocomposite using artificial neural networks. Int J Adv Manuf Technol 62(9-12):953-963
    • (2012) Int J Adv Manuf Technol , vol.62 , Issue.9-12 , pp. 953-963
    • Fathy, A.1    Megahed, A.A.2
  • 63
    • 79751524432 scopus 로고    scopus 로고
    • Performance comparison of conventional and wiper ceramic inserts in hard turning through artificial neural network modeling
    • Gaitonde VN et al (2011) Performance comparison of conventional and wiper ceramic inserts in hard turning through artificial neural network modeling. Int J Adv Manuf Technol 52(1-4):101-114
    • (2011) Int J Adv Manuf Technol , vol.52 , Issue.1-4 , pp. 101-114
    • Gaitonde, V.N.1
  • 64
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • DOI 10.1016/S0893-6080(03)00169-2
    • Cherkassky V, Ma Y (2004) Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw 17(1):113-126 (Pubitemid 38019003)
    • (2004) Neural Networks , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.