메뉴 건너뛰기




Volumn 43, Issue 7, 2003, Pages 707-720

Drilling wear detection and classification using vibration signals and artificial neural network

Author keywords

Drilling; Neural network; Pattern recognition; Perceptron; Process monitoring; Sensors; Supervised learning; Vibration analysis

Indexed keywords

ALGORITHMS; DRILLING; MACHINING; PATTERN RECOGNITION; SENSORS; VIBRATIONS (MECHANICAL); WEAR OF MATERIALS;

EID: 0037402139     PISSN: 08906955     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0890-6955(03)00023-3     Document Type: Article
Times cited : (192)

References (18)
  • 2
    • 0030195892 scopus 로고    scopus 로고
    • Design and implementation of sensor-based tool-wear monitoring systems
    • Leem C.S., Dornfeld D.A. Design and implementation of sensor-based tool-wear monitoring systems. Mechanical Systems and Signal Processing. 10:(4):1996;439-458.
    • (1996) Mechanical Systems and Signal Processing , vol.10 , Issue.4 , pp. 439-458
    • Leem, C.S.1    Dornfeld, D.A.2
  • 3
    • 58149130913 scopus 로고
    • Monitoring drilling wear states by a fuzzy pattern recognition technique
    • Li P.G., Wu S.M. Monitoring drilling wear states by a fuzzy pattern recognition technique. ASME Journal of Engineering for Industry. 110:1994;297-300.
    • (1994) ASME Journal of Engineering for Industry , vol.110 , pp. 297-300
    • Li, P.G.1    Wu, S.M.2
  • 5
    • 0028430240 scopus 로고
    • Self-organizing neural network application to drill wear classification
    • Govekar E., Grabec I. Self-organizing neural network application to drill wear classification. ASME Journal of Engineering for Industry. 116:1994;233-238.
    • (1994) ASME Journal of Engineering for Industry , vol.116 , pp. 233-238
    • Govekar, E.1    Grabec, I.2
  • 6
    • 0012878640 scopus 로고
    • A neural network approach to drilled hole quality monitoring based on machine spindle vibrations
    • R.P. Barton, A.R. Thangaraj. A neural network approach to drilled hole quality monitoring based on machine spindle vibrations. Trans. NAMRI/SME (1990), 232-239.
    • (1990) Trans. NAMRI/SME , pp. 232-239
    • Barton, R.P.1    Thangaraj, A.R.2
  • 12
    • 0031235710 scopus 로고    scopus 로고
    • Neural network solutions to the tool condition monitoring problem in metal cutting - A critical review of methods
    • Dimla Jr D.E., Lister P.M., Leighton N.J. Neural network solutions to the tool condition monitoring problem in metal cutting - a critical review of methods. International Journal of Machine Tools and Manufacture. 37:(9):1997;1219-1241.
    • (1997) International Journal of Machine Tools and Manufacture , vol.37 , Issue.9 , pp. 1219-1241
    • Dimla D.E., Jr.1    Lister, P.M.2    Leighton, N.J.3
  • 13
    • 0032634579 scopus 로고    scopus 로고
    • Ridge and phase identification in the frequency analysis of transient signals by harmonic wavelets
    • Newland D.E. Ridge and phase identification in the frequency analysis of transient signals by harmonic wavelets. ASME Journal of Vibration and Acoustics. 121:1999;149-155.
    • (1999) ASME Journal of Vibration and Acoustics , vol.121 , pp. 149-155
    • Newland, D.E.1
  • 14
    • 0003561344 scopus 로고
    • Englewood Cliffs, NJ, USA: Prentice Hall. Chapter 7
    • Marple S.L. Digital Spectral Analysis. 1987;Prentice Hall, Englewood Cliffs, NJ, USA. Chapter 7.
    • (1987) Digital Spectral Analysis
    • Marple, S.L.1
  • 17
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • Lippmann R.P. An introduction to computing with neural nets. IEEE ASSP Magazine. 4:(2):1987;4-22.
    • (1987) IEEE ASSP Magazine , vol.4 , Issue.2 , pp. 4-22
    • Lippmann, R.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.