메뉴 건너뛰기




Volumn 18, Issue 1, 2014, Pages 45-56

A multi-gene genetic programming model for estimating stress-dependent soil water retention curves

Author keywords

Economical; GPTIPS; LS SVM; Multi gene genetic programming; SDSWRC

Indexed keywords

GENETIC ALGORITHM; NUMERICAL MODEL; REGRESSION ANALYSIS; SOIL WATER; STRESS; SUCTION; WATER RETENTION;

EID: 84896402736     PISSN: 14200597     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10596-013-9381-z     Document Type: Article
Times cited : (72)

References (50)
  • 1
    • 0004153420 scopus 로고    scopus 로고
    • Tree root damage to buildings
    • In: Willowmead, Wantage
    • Biddle, P.G.: Tree root damage to buildings. In: Causes, Diagnosis and Remedy, vol. 1. Willowmead, Wantage (1998)
    • (1998) Causes, Diagnosis and Remedy , vol.1
    • Biddle, P.G.1
  • 3
    • 26444602995 scopus 로고    scopus 로고
    • Desiccation of a clay by grass, bushes and trees
    • Blight, G.E.: Desiccation of a clay by grass, bushes and trees. Geotech. Geol. Eng. 23(6), 697-720 (2005)
    • (2005) Geotech. Geol. Eng. , vol.23 , Issue.6 , pp. 697-720
    • Blight, G.E.1
  • 6
    • 77955911203 scopus 로고    scopus 로고
    • Experimental research on soil-water characteristic curve of remolded residual soils
    • Li, J.Y., Yang, Q., Li, P.Y., Yang, Q.L.: Experimental research on soil-water characteristic curve of remolded residual soils. Electron. J. Geotech. Eng. 14, 1-12 (2009)
    • (2009) Electron. J. Geotech. Eng. , vol.14 , pp. 1-12
    • Li, J.Y.1    Yang, Q.2    Li, P.Y.3    Yang, Q.L.4
  • 7
    • 77955176283 scopus 로고    scopus 로고
    • Relationships between soil fabric and suction cycles in compacted swelling soils
    • Nowamooz, H., Masrouri, F.: Relationships between soil fabric and suction cycles in compacted swelling soils. Eng. Geol. 114(3), 444-455 (2010)
    • (2010) Eng. Geol. , vol.114 , Issue.3 , pp. 444-455
    • Nowamooz, H.1    Masrouri, F.2
  • 8
    • 84857223273 scopus 로고    scopus 로고
    • Critical review on the parameters influencing soil-water characteristic curve
    • Malaya, C., Sreedeep, S.: Critical review on the parameters influencing soil-water characteristic curve. J. Irrig. Drainage Eng. 138(1), 55-62 (2012)
    • (2012) J. Irrig. Drainage Eng. , vol.138 , Issue.1 , pp. 55-62
    • Malaya, C.1    Sreedeep, S.2
  • 9
    • 84901637912 scopus 로고    scopus 로고
    • Effect of vertical stress on the soil water characteristic curve of highly expansive soils
    • In: Springer, Berlin
    • Elkady, T.Y., Al-Mahbashi, A.M.: Effect of vertical stress on the soil water characteristic curve of highly expansive soils. In: Unsaturated Soils: Research and Applications, pp. 165-172. Springer, Berlin (2012)
    • (2012) Unsaturated Soils: Research and Applications , pp. 165-172
    • Elkady, T.Y.1    Al-Mahbashi, A.M.2
  • 12
    • 84901845280 scopus 로고    scopus 로고
    • A study on the influence of soil-water characteristic curve on the seepage modeling of unsaturated soil
    • Garg, A., Malaya, C., Sreedeep, S.: A study on the influence of soil-water characteristic curve on the seepage modeling of unsaturated soil. Int. J. Earth Sci. Eng. 3(2), 40-46 (2010)
    • (2010) Int. J. Earth Sci. Eng. , vol.3 , Issue.2 , pp. 40-46
    • Garg, A.1    Malaya, C.2    Sreedeep, S.3
  • 13
    • 84901853689 scopus 로고    scopus 로고
    • Influence of different suction measuring procedures on SWCC and seepage modeling in unsaturated soils
    • In: New Delhi, Tata McGraw Hill Education Private Limited, New Delhi
    • Garg, A., Malaya, C., Sreedeep, S.: Influence of different suction measuring procedures on SWCC and seepage modeling in unsaturated soils. In: Proceedings of 6ICEG (International Congress on Environmental Geotechnics), New Delhi, pp. 1605-1608. Tata McGraw Hill Education Private Limited, New Delhi (2010)
    • (2010) Proceedings of 6ICEG (International Congress on Environmental Geotechnics) , pp. 1605-1608
    • Garg, A.1    Malaya, C.2    Sreedeep, S.3
  • 14
    • 0018675429 scopus 로고
    • Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density
    • Gupta, S., Larson, W.E.: Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density. Water Resour. Res. 15(6), 1633-1635 (1979)
    • (1979) Water Resour. Res. , vol.15 , Issue.6 , pp. 1633-1635
    • Gupta, S.1    Larson, W.E.2
  • 15
    • 0001405151 scopus 로고
    • Estimation of soil-water retention and hydraulic properties
    • In: Morel-Seytoux, H.J. (ed.): Kluwer, Beltsville
    • Rawls, W.J., Brakensiek, D.L.: Estimation of soil-water retention and hydraulic properties. In: Morel-Seytoux, H.J. (ed.): Unsaturated Flow in HydrologicModeling Theory and Practice, pp. 275-300. Kluwer, Beltsville (1989)
    • (1989) Unsaturated Flow in HydrologicModeling Theory and Practice , pp. 275-300
    • Rawls, W.J.1    Brakensiek, D.L.2
  • 17
    • 0024873590 scopus 로고
    • Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content
    • Vereecken, H., Maes, J., Feyen, J., Darius, P.: Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content. Soil Sci. 148(6), 389-403 (1989)
    • (1989) Soil Sci. , vol.148 , Issue.6 , pp. 389-403
    • Vereecken, H.1    Maes, J.2    Feyen, J.3    Darius, P.4
  • 18
    • 0030816505 scopus 로고    scopus 로고
    • Regionalization of soil-water retention curves in a highly variable soilscape, I. Developing a new pedo-transfer function
    • Scheinost, A.C., Sinowski, W., Auerswald, K.: Regionalization of soil-water retention curves in a highly variable soilscape, I. Developing a new pedo-transfer function. Geoderma 78, 129-143 (1997)
    • (1997) Geoderma , vol.78 , pp. 129-143
    • Scheinost, A.C.1    Sinowski, W.2    Auerswald, K.3
  • 19
    • 0032768216 scopus 로고    scopus 로고
    • Scaling parameter to predict the soil-water characteristic from particle-size distribution data
    • Arya, L.M., Leij, F.J., van Genuchten, M. Th., Shouse, P.J.: Scaling parameter to predict the soil-water characteristic from particle-size distribution data. Soil Sci. Soc. America J. 63, 510-519 (1999)
    • (1999) Soil Sci. Soc. America J. , vol.63 , pp. 510-519
    • Arya, L.M.1    Leij, F.J.2    van Genuchten, M.T.3    Shouse, P.J.4
  • 20
    • 0030473352 scopus 로고    scopus 로고
    • Artificial neural networks to estimate soil water retention from easily measurable data
    • Pachepsky, Y.A., Timlin, D., Varallyay, G.: Artificial neural networks to estimate soil water retention from easily measurable data. Soil Sci. Society America J. 60(3), 727-733 (1996)
    • (1996) Soil Sci. Society America J. , vol.60 , Issue.3 , pp. 727-733
    • Pachepsky, Y.A.1    Timlin, D.2    Varallyay, G.3
  • 22
    • 0029660470 scopus 로고    scopus 로고
    • Modeling water retention curves of sandy soils using neural networks
    • Schaap, M.G., Bouten, W.: Modeling water retention curves of sandy soils using neural networks. Water Resour. Res. 32(10), 3033-3040 (1996)
    • (1996) Water Resour. Res. , vol.32 , Issue.10 , pp. 3033-3040
    • Schaap, M.G.1    Bouten, W.2
  • 23
    • 0032474481 scopus 로고    scopus 로고
    • Using neural networks to predict soil water retention and soil hydraulic conductivity
    • Schaap, M.G., Leij, F.J.: Using neural networks to predict soil water retention and soil hydraulic conductivity. Soil Tillage Res. 47(1), 37-42 (1998)
    • (1998) Soil Tillage Res. , vol.47 , Issue.1 , pp. 37-42
    • Schaap, M.G.1    Leij, F.J.2
  • 24
    • 0034193893 scopus 로고    scopus 로고
    • Improved prediction of unsaturated hydraulic conductivity with the Mualem-van Genuchten model
    • Schaap, M.G., Leij, F.J.: Improved prediction of unsaturated hydraulic conductivity with the Mualem-van Genuchten model. Soil Sci. Soc. Am. J. 64(3), 843-851 (2000)
    • (2000) Soil Sci. Soc. Am. J. , vol.64 , Issue.3 , pp. 843-851
    • Schaap, M.G.1    Leij, F.J.2
  • 25
    • 0030300642 scopus 로고    scopus 로고
    • Testing an artificial neural network for predicting soil hydraulic conductivity
    • Tamari, S., Wösten, J.H.M., Ruiz-Suarez, J.C.: Testing an artificial neural network for predicting soil hydraulic conductivity. Soil Sci. Soc. Am. J. 60(6), 1732-1741 (1996)
    • (1996) Soil Sci. Soc. Am. J. , vol.60 , Issue.6 , pp. 1732-1741
    • Tamari, S.1    Wösten, J.H.M.2    Ruiz-Suarez, J.C.3
  • 26
    • 33747352303 scopus 로고    scopus 로고
    • A conditioned Latin hypercube method for sampling in the presence of ancillary information
    • Minasny, B., McBratney, A.B.: A conditioned Latin hypercube method for sampling in the presence of ancillary information. Comput Geosci. 32(9), 1378-1388 (2006)
    • (2006) Comput Geosci. , vol.32 , Issue.9 , pp. 1378-1388
    • Minasny, B.1    McBratney, A.B.2
  • 27
    • 84870829077 scopus 로고    scopus 로고
    • Multivariate adaptive regression splines for analysis of geotechnical engineering systems
    • Zhang, W.G., Goh, A.T.C.: Multivariate adaptive regression splines for analysis of geotechnical engineering systems. Comput Geotech. 48, 82-95 (2013)
    • (2013) Comput Geotech. , vol.48 , pp. 82-95
    • Zhang, W.G.1    Goh, A.T.C.2
  • 28
    • 0003785763 scopus 로고    scopus 로고
    • The UNSODA Unsaturated Soil Hydraulic Database, version 1.0
    • 095. US Environmental Protection Agency, Ada, Oklahoma
    • Leij, F.J., Alves, W.J., van Genuchten, M.T., Williams, J.R.: The UNSODA Unsaturated Soil Hydraulic Database, version 1.0. EPA Report, EPA/600, 96, 095. US Environmental Protection Agency, Ada, Oklahoma (1996)
    • (1996) EPA Report, EPA/600 , vol.96
    • Leij, F.J.1    Alves, W.J.2    van Genuchten, M.T.3    Williams, J.R.4
  • 30
    • 19844362946 scopus 로고    scopus 로고
    • Genetic programming for the identification of nonlinear input-output models
    • Madár, J., Abonyi, J., Szeifert, F.: Genetic programming for the identification of nonlinear input-output models. Ind. Eng. Chem. Res. 44, 3178-3186 (2005)
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 3178-3186
    • Madár, J.1    Abonyi, J.2    Szeifert, F.3
  • 31
    • 80054802176 scopus 로고    scopus 로고
    • Gene expression programming with multiple chromosomes
    • Wang, B., Yao, M., Zhu, R.: Gene expression programming with multiple chromosomes. Int. J. Model. Identif. Control. 14, 235-241 (2011)
    • (2011) Int. J. Model. Identif. Control. , vol.14 , pp. 235-241
    • Wang, B.1    Yao, M.2    Zhu, R.3
  • 33
    • 84883578713 scopus 로고    scopus 로고
    • Review of empirical modelling techniques for modelling of turning process
    • Garg, A., Bhalerao, Y., Tai, K.: Review of empirical modelling techniques for modelling of turning process. Int. J. Modelling, Identification Control. 20(2), 121-129 (2013)
    • (2013) Int. J. Modelling, Identification Control. , vol.20 , Issue.2 , pp. 121-129
    • Garg, A.1    Bhalerao, Y.2    Tai, K.3
  • 34
    • 84887621431 scopus 로고    scopus 로고
    • Classification-driven model selection approach of genetic programming in modelling of turning process
    • (in press). doi:10.1007/s00170-013-5103-x
    • Garg, A., Rachmawati L., Tai, K.: Classification-driven model selection approach of genetic programming in modelling of turning process. Int. J. Adv. Manuf. Technol. (2013, in press). doi:10.1007/s00170-013-5103-x
    • (2013) Int. J. Adv. Manuf. Technol.
    • Garg, A.1    Rachmawati, L.2    Tai, K.3
  • 35
    • 84893219807 scopus 로고    scopus 로고
    • State-of-the-art in empirical modelling of rapid prototyping processes
    • (in press)
    • Garg, A., Savalani, M.M., Tai, K.: State-of-the-art in empirical modelling of rapid prototyping processes. Rapid Prototyp. J. (2013, in press)
    • (2013) Rapid Prototyp. J.
    • Garg, A.1    Savalani, M.M.2    Tai, K.3
  • 37
    • 84885571970 scopus 로고    scopus 로고
    • Selection of a robust experimental design for the effective modeling of the nonlinear systems using genetic programming
    • In: Singapore
    • Garg, A., Tai, K.: Selection of a robust experimental design for the effective modeling of the nonlinear systems using genetic programming. In: Proceedings of 2013 IEEE Symposium on Computational Intelligence and Data mining (CIDM), Singapore, pp. 293-298 (2013)
    • (2013) Proceedings of 2013 IEEE Symposium on Computational Intelligence and Data mining (CIDM) , pp. 293-298
    • Garg, A.1    Tai, K.2
  • 38
    • 84876995897 scopus 로고    scopus 로고
    • Comparison of statistical and machine learning methods in modelling of data with multicollinearity
    • Garg, A., Tai, K.: Comparison of statistical and machine learning methods in modelling of data with multicollinearity. Int. J. Model. Identif. Control. 18(4), 295-312 (2013)
    • (2013) Int. J. Model. Identif. Control. , vol.18 , Issue.4 , pp. 295-312
    • Garg, A.1    Tai, K.2
  • 40
    • 0013485092 scopus 로고    scopus 로고
    • PhD Thesis, Dept. Chemical and Process Engineering, University of Newcastle, UK
    • Hiden, H.G.: Data-based modelling using genetic programming. PhD Thesis, Dept. Chemical and Process Engineering, University of Newcastle, UK (1998)
    • (1998) Data-based modelling using genetic programming.
    • Hiden, H.G.1
  • 41
    • 9444255340 scopus 로고    scopus 로고
    • Modelling chemical process systems using a multigene genetic programming algorithm
    • Stanford
    • Hinchliffe, M., Hiden, H., Mckay, B., Willis, M., Tham, M., Barton, G.: Modelling chemical process systems using a multigene genetic programming algorithm. Late breaking paper, GP'96. 624, pp 28-31. Stanford (1996)
    • (1996) Late breaking paper, GP'96. , vol.624 , pp. 28-31
    • Hinchliffe, M.1    Hiden, H.2    McKay, B.3    Willis, M.4    Tham, M.5    Barton, G.6
  • 42
    • 84862283893 scopus 로고    scopus 로고
    • Support vector machines models for surface roughness prediction in CNC turning of AISI 304 Austenitic stainless steel
    • Cayda, U., Ekici, S.: Support vector machines models for surface roughness prediction in CNC turning of AISI 304 Austenitic stainless steel. J. Intell. Manuf. 23, 639-650 (2012)
    • (2012) J. Intell. Manuf. , vol.23 , pp. 639-650
    • Cayda, U.1    Ekici, S.2
  • 43
    • 74549139703 scopus 로고    scopus 로고
    • Predictive modelling of turning operations using response surface methodology, artificial neural networks and support vector regression
    • Gupta, A.K.: Predictive modelling of turning operations using response surface methodology, artificial neural networks and support vector regression. Int. J. Prod. Res. 48, 763-778 (2010)
    • (2010) Int. J. Prod. Res. , vol.48 , pp. 763-778
    • Gupta, A.K.1
  • 44
    • 84911997374 scopus 로고    scopus 로고
    • A Hybrid M5-genetic programming approach for ensuring greater trustworthiness of prediction ability in modelling of FDM process
    • doi:10.1007/s10845-013-0734-1
    • Garg, A., Tai, K., Lee, C.H., Savalani, M.M.: A Hybrid M5-genetic programming approach for ensuring greater trustworthiness of prediction ability in modelling of FDM process. J. Intell. Manuf. (2013). doi:10.1007/s10845-013-0734-1
    • (2013) J. Intell. Manuf.
    • Garg, A.1    Tai, K.2    Lee, C.H.3    Savalani, M.M.4
  • 47
    • 34548361987 scopus 로고    scopus 로고
    • An approach based on current and sound signals for in-process tool wear monitoring
    • Salgado, D.R., Alonso, F.J.: An approach based on current and sound signals for in-process tool wear monitoring. Int. J. Mach. Tools Manuf. 47, 2140-2152 (2007)
    • (2007) Int. J. Mach. Tools Manuf. , vol.47 , pp. 2140-2152
    • Salgado, D.R.1    Alonso, F.J.2
  • 48
    • 67650000504 scopus 로고    scopus 로고
    • In-process surface roughness prediction system using cutting vibrations in turning
    • Salgado, D.R., Alonso, F.J., Cambero, I., Marcelo, A.: In-process surface roughness prediction system using cutting vibrations in turning. Int. J. Adv. Manuf. Technol. 43, 40-51 (2009)
    • (2009) Int. J. Adv. Manuf. Technol. , vol.43 , pp. 40-51
    • Salgado, D.R.1    Alonso, F.J.2    Cambero, I.3    Marcelo, A.4
  • 49
    • 79958784624 scopus 로고    scopus 로고
    • An artificial neural network based heuristic for flow shop scheduling problems
    • Ramanan, T.R., Sridharan, R., Shashikant, K.S., Haq, A.N.: An artificial neural network based heuristic for flow shop scheduling problems. J. Intell. Manuf. 22, 279-288 (2011)
    • (2011) J. Intell. Manuf. , vol.22 , pp. 279-288
    • Ramanan, T.R.1    Sridharan, R.2    Shashikant, K.S.3    Haq, A.N.4
  • 50
    • 84862197081 scopus 로고    scopus 로고
    • An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring
    • Tian, Z.: An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring. J. Intell. Manuf. 23, 227-237 (2012)
    • (2012) J. Intell. Manuf. , vol.23 , pp. 227-237
    • Tian, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.