메뉴 건너뛰기




Volumn 4, Issue 6, 2014, Pages 1027-1046

Parametric and nonparametric statistical methods for genomic selection of traits with additive and epistatic genetic architectures

Author keywords

Epistasis; Genomic selection; GenPred; Nonparametric; parametric; Prediction; Shared data resources

Indexed keywords

ACCURACY; ARTICLE; BAYESIAN LEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR; BAYESIAN RIDGE REGRESSION; BEST LINEAR UNBIASED PREDICTION; EPISTASIS; GENETIC SELECTION; GENETIC TRAIT; GENETIC VARIABILITY; GENOME; GENOTYPE; HERITABILITY; HUMAN; INBRED STRAIN; LEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR; LEAST SQUARES REGRESSION; NADARAYA WATSON ESTIMATOR; NONHUMAN; NONPARAMETRIC METHOD; PARAMETRIC METHOD; PHENOTYPE; QUANTITATIVE TRAIT; REGRESSION ANALYSIS; REPRODUCING KERNEL HILBERT SPACE; RIDGE REGRESSION; STATISTICAL ANALYSIS; SUPPORT VECTOR MACHINE; SUPPORT VECTOR MACHINE REGRESSION;

EID: 84902603065     PISSN: None     EISSN: 21601836     Source Type: Journal    
DOI: 10.1534/g3.114.010298     Document Type: Article
Times cited : (145)

References (117)
  • 1
    • 0003958279 scopus 로고
    • Mind and Body: The Theories of Their Relation, D
    • Appleton and Company, New York
    • Bain, A., 1873 Mind and Body: The Theories of Their Relation, D. Appleton and Company, New York.
    • (1873)
    • Bain, A.1
  • 2
    • 0002348364 scopus 로고
    • The power and deceit of QTL experiments: lessons from comparative QTL studies
    • in, edited by D. B. Wilkinson. Washington, DC: American Seed Trade Association
    • Beavis, W. D., 1994 The power and deceit of QTL experiments: lessons from comparative QTL studies, pp. 250-265 in Proceedings of the 49th Annual Corn and Sorghum Research Conference, edited by D. B. Wilkinson. Washington, DC: American Seed Trade Association 250-265.
    • (1994) Proceedings of the 49th Annual Corn and Sorghum Research Conference , pp. 250-265
    • Beavis, W.D.1
  • 3
    • 0028141065 scopus 로고
    • Prediction of maize single-cross performance using RFLPs and information from related hybrids
    • Bernardo, R., 1994 Prediction of maize single-cross performance using RFLPs and information from related hybrids Crop Sci.. 34: 20-25.
    • (1994) Crop Sci. , vol.34 , pp. 20-25
    • Bernardo, R.1
  • 4
    • 54949113665 scopus 로고    scopus 로고
    • Molecular markers and selection for complex traits in plants: learning from the last 20 years
    • Bernardo, R., 2008 Molecular markers and selection for complex traits in plants: learning from the last 20 years Crop Sci.. 48: 1649-1664.
    • (2008) Crop Sci. , vol.48 , pp. 1649-1664
    • Bernardo, R.1
  • 5
    • 0242657013 scopus 로고    scopus 로고
    • Breeding for Quantitative Traits in Plants
    • Stemma Press, Woodbury, MN
    • Bernardo, R., 2010 Breeding for Quantitative Traits in Plants, Stemma Press, Woodbury, MN.
    • (2010)
    • Bernardo, R.1
  • 6
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky, V., and Y. Ma, 2004 Practical selection of SVM parameters and noise estimation for SVM regression Neural Netw.. 17: 113-126.
    • (2004) Neural Netw. , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 7
    • 0028909487 scopus 로고
    • Epistasis and its contribution to genetic variance components
    • Cheverud, J., and E. Routman, 1995 Epistasis and its contribution to genetic variance components Genetics. 139: 1455-1461.
    • (1995) Genetics , vol.139 , pp. 1455-1461
    • Cheverud, J.1    Routman, E.2
  • 8
    • 84925897233 scopus 로고
    • A calibration curve for radiocarbon dates
    • Clark, R. M., 1975 A calibration curve for radiocarbon dates Antiquity. 49: 251-266.
    • (1975) Antiquity , vol.49 , pp. 251-266
    • Clark, R.M.1
  • 9
    • 0000046644 scopus 로고
    • An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present
    • Cockerham, C. C., 1954 An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present Genetics. 39: 859-882.
    • (1954) Genetics , vol.39 , pp. 859-882
    • Cockerham, C.C.1
  • 10
    • 0347366364 scopus 로고    scopus 로고
    • Complexity, quantitative traits and plant breeding: a role for simulation modelling in the genetic improvement of crops
    • Quantitative Genetics, Genomics and Plant Breeding
    • Cooper, M., D. W. Podlich, K. P. Micallef, O. S. Smith, N. M. Jensen, et al., 2002 Complexity, quantitative traits and plant breeding: a role for simulation modelling in the genetic improvement of crops. Quantitative Genetics, Genomics and Plant Breeding 143-166.
    • (2002) , pp. 143-166
    • Cooper, M.1    Podlich, D.W.2    Micallef, K.P.3    Smith, O.S.4    Jensen, N.M.5
  • 11
    • 0016919827 scopus 로고
    • Restricted maximum likelihood (REML) estimation of variance components in the mixed model
    • Corbeil, R. R., and S. R. Searle, 1976 Restricted maximum likelihood (REML) estimation of variance components in the mixed model Technometrics. 18: 31-38.
    • (1976) Technometrics , vol.18 , pp. 31-38
    • Corbeil, R.R.1    Searle, S.R.2
  • 12
    • 0036797562 scopus 로고    scopus 로고
    • Epistasis: what it means,what it doesn't mean, and statistical methods to detect it in humans
    • Cordell,H. J., 2002 Epistasis: what it means,what it doesn't mean, and statistical methods to detect it in humans Hum. Mol. Genet.. 11: 2463-2468.
    • (2002) Hum. Mol. Genet. , vol.11 , pp. 2463-2468
    • Cordell, H.J.1
  • 13
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., and V. Vapnik, 1995 Support-vector networks Machine Leaming. 20: 273-297.
    • (1995) Machine Leaming , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 14
    • 0003798635 scopus 로고    scopus 로고
    • An Introduction to Support Vector Machines and Other Kernel-based Learning Methods
    • Cambridge University Press, New York
    • Cristianini, N., and J. Shawe-Taylor, 2000 An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Cambridge University Press, New York.
    • (2000)
    • Cristianini, N.1    Shawe-Taylor, J.2
  • 15
    • 77951542842 scopus 로고    scopus 로고
    • On epistasis: why it is unimportant in polygenic directional selection
    • Crow, J. F., 2010 On epistasis: why it is unimportant in polygenic directional selection. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365(1544): 1241-1244.
    • (2010) Philos. Trans. R. Soc. Lond. B Biol. Sci. , vol.365 , Issue.1544 , pp. 1241-1244
    • Crow, J.F.1
  • 16
    • 77958581195 scopus 로고    scopus 로고
    • The impact of genetic architecture on genome-wide evaluation methods
    • Daetwyler, H. D., R. Pong-Wong, B. Villanueva, and J. A. Woolliams, 2010 The impact of genetic architecture on genome-wide evaluation methods Genetics. 185: 1021-1031.
    • (2010) Genetics , vol.185 , pp. 1021-1031
    • Daetwyler, H.D.1    Pong-Wong, R.2    Villanueva, B.3    Woolliams, J.A.4
  • 17
    • 27144542783 scopus 로고    scopus 로고
    • Ridge regression revisited
    • De Boer, P. M. C., and C. M. Hafner, 2005 Ridge regression revisited. Stat. Neerl. 59(4): 498-505.
    • (2005) Stat. Neerl. , vol.59 , Issue.4 , pp. 498-505
    • De Boer, P.M.C.1    Hafner, C.M.2
  • 18
    • 79957472742 scopus 로고    scopus 로고
    • BLR: Bayesian Linear Regression
    • R package version 1.2.
    • De los Campos, G., and P. P. Rodriguez, 2010 BLR: Bayesian Linear Regression. R package version 1.2. http://CRAN.R-project.org/package=BLR
    • (2010)
    • De Los Campos, G.1    Rodriguez, P.P.2
  • 19
    • 67849130524 scopus 로고    scopus 로고
    • Predicting quantitative traits with regression models for dense molecular markers and pedigrees
    • De los Campos, G., H. Naya, D. Gianola, J. Crossa, A. Legarra et al., 2009 Predicting quantitative traits with regression models for dense molecular markers and pedigrees. Genetics 182(1): 375-385.
    • (2009) Genetics , vol.182 , Issue.1 , pp. 375-385
    • De Los Campos, G.1    Naya, H.2    Gianola, D.3    Crossa, J.4    Legarra, A.5
  • 20
    • 78649317608 scopus 로고    scopus 로고
    • Predicting genetic predisposition in humans: the promise of whole-genome markers
    • De los Campos, G., D. Gianola, and D. B. Allison, 2010a Predicting genetic predisposition in humans: the promise of whole-genome markers Nat. Rev. Genet.. 11: 880-886.
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 880-886
    • De Los Campos, G.1    Gianola, D.2    Allison, D.B.3
  • 21
    • 78951477718 scopus 로고    scopus 로고
    • Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods
    • De los Campos, G., D. Gianola, G. J. M. Rosa, K. A.Weigel, and J. Crossa, 2010b Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods Genet. Res.. 92: 295-308.
    • (2010) Genet. Res. , vol.92 , pp. 295-308
    • De Los Campos, G.1    Gianola, D.2    Rosa, G.J.M.3    Weigel, K.A.4    Crossa, J.5
  • 22
    • 84876390765 scopus 로고    scopus 로고
    • Whole-genome regression and prediction methods applied to plant and animal breeding
    • De los Campos, G., J. M. Hickey, R. Pong-Wong, H. D. Daetwyler, and M. P. L. Calus, 2013 Whole-genome regression and prediction methods applied to plant and animal breeding Genetics. 193: 327-345.
    • (2013) Genetics , vol.193 , pp. 327-345
    • De Los Campos, G.1    Hickey, J.M.2    Pong-Wong, R.3    Daetwyler, H.D.4    Calus, M.P.L.5
  • 23
    • 0004287113 scopus 로고
    • Genetics of the Evolutionary Process
    • Columbia University Press, New York
    • Dobzhansky, T., 1937 Genetics of the Evolutionary Process. Columbia University Press, New York.
    • (1937)
    • Dobzhansky, T.1
  • 24
    • 85136354327 scopus 로고    scopus 로고
    • Ridge regression and other kernels for genomic selection with R package rrBLUP
    • Endelman, J. B., 2011 Ridge regression and other kernels for genomic selection with R package rrBLUP Plant Genome. 4: 250-255.
    • (2011) Plant Genome , vol.4 , pp. 250-255
    • Endelman, J.B.1
  • 26
    • 0003995062 scopus 로고    scopus 로고
    • Introduction to Quantitative Genetics
    • Pearson Education Limited, Essex, England
    • Falconer, D. S., and T. F. C. Mackay, 1996 Introduction to Quantitative Genetics, Pearson Education Limited, Essex, England.
    • (1996)
    • Falconer, D.S.1    Mackay, T.F.C.2
  • 27
    • 28444464728 scopus 로고    scopus 로고
    • Linear Models with R
    • CRC Press, Boca Raton, FL
    • Faraway, J. J., 2006 Linear Models with R. CRC Press, Boca Raton, FL.
    • (2006)
    • Faraway, J.J.1
  • 28
    • 79952090305 scopus 로고    scopus 로고
    • GenSel-User manual for a portfolio of genomic selection related analyses
    • Animal Breeding and Genetics, Iowa State University, Ames. Available at
    • Fernando, R. L., and D. J. Garrick, 2008 GenSel-User manual for a portfolio of genomic selection related analyses. Animal Breeding and Genetics, Iowa State University, Ames. Available at: http://taurus.ansci.iastate.edu/gensel.
    • (2008)
    • Fernando, R.L.1    Garrick, D.J.2
  • 29
    • 0001244316 scopus 로고
    • Marker assisted selection using best linear unbiased prediction
    • Fernando, R. L., and M. Grossman, 1989 Marker assisted selection using best linear unbiased prediction Genet. Sel. Evol.. 21: 467-477.
    • (1989) Genet. Sel. Evol. , vol.21 , pp. 467-477
    • Fernando, R.L.1    Grossman, M.2
  • 30
    • 84971185409 scopus 로고
    • The correlation between relatives on the supposition of Mendelian inheritance
    • Fisher, R. A., 1918 The correlation between relatives on the supposition of Mendelian inheritance Trans. R. Soc. Edinb.. 52: 399-433.
    • (1918) Trans. R. Soc. Edinb. , vol.52 , pp. 399-433
    • Fisher, R.A.1
  • 31
    • 66049159816 scopus 로고    scopus 로고
    • Genetic architecture of quantitative traits in mice, flies, and humans
    • Flint, J., and T. F. C. Mackay, 2009 Genetic architecture of quantitative traits in mice, flies, and humans Genome Res.. 19: 723-733.
    • (2009) Genome Res. , vol.19 , pp. 723-733
    • Flint, J.1    Mackay, T.F.C.2
  • 32
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • URL
    • Friedman, J., T. Hastie, and R. Tibshirani, 2010 Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33: 1-22 URL http://www.jstatsoft.org/v33/i01/.
    • (2010) J. Stat. Softw. , vol.33 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 33
    • 0004012196 scopus 로고    scopus 로고
    • Bayesian Data Analysis
    • Chapman and Hall/CRC, Boca Raton, FL
    • Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin, 2003 Bayesian Data Analysis. Chapman and Hall/CRC, Boca Raton, FL.
    • (2003)
    • Gelman, A.1    Carlin, J.B.2    Stern, H.S.3    Rubin, D.B.4
  • 34
    • 0442309436 scopus 로고    scopus 로고
    • The variable selection problem
    • George, E. I., 2000 The variable selection problem J. Am. Stat. Assoc.. 95: 1304-1308.
    • (2000) J. Am. Stat. Assoc. , vol.95 , pp. 1304-1308
    • George, E.I.1
  • 35
    • 33746424900 scopus 로고    scopus 로고
    • Genomic-assisted prediction of genetic value with semiparametric procedures
    • Gianola, D., R. L. Fernando, and A. Stella, 2006 Genomic-assisted prediction of genetic value with semiparametric procedures Genetics. 173: 1761-1776.
    • (2006) Genetics , vol.173 , pp. 1761-1776
    • Gianola, D.1    Fernando, R.L.2    Stella, A.3
  • 37
    • 84902578206 scopus 로고    scopus 로고
    • Statistical learning methods for genome-based analysis of quantitative traits
    • World Genetic Congress Applied to Livestock Production. Leipzig, Germany, CD-ROM Communication 0014
    • Gianola, D., G. de los Campos, O. Gonzlez-Recio, N. Long, H. Okut et al., 2010 Statistical learning methods for genome-based analysis of quantitative traits. World Genetic Congress Applied to Livestock Production. Leipzig, Germany, CD-ROM Communication 0014.
    • (2010)
    • Gianola, D.1    De Los Campos, G.2    Gonzlez-Recio, O.3    Long, N.4    Okut, H.5
  • 38
    • 80053594474 scopus 로고    scopus 로고
    • Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat
    • Gianola, D., H. Okut, K. A. Weigel, and G. J. M. Rosa, 2011 Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat. BMC Genet. 12: 87.
    • (2011) BMC Genet. , vol.12 , pp. 87
    • Gianola, D.1    Okut, H.2    Weigel, K.A.3    Rosa, G.J.M.4
  • 39
    • 0033949025 scopus 로고    scopus 로고
    • Quantitative trait loci and gene interaction: the quantitative genetics of metapopulation
    • Goodnight, C. J., 2000 Quantitative trait loci and gene interaction: the quantitative genetics of metapopulation Heredity. 84: 587-598.
    • (2000) Heredity , vol.84 , pp. 587-598
    • Goodnight, C.J.1
  • 40
    • 78650733063 scopus 로고    scopus 로고
    • In silico genotyping of the maize nested association mapping population
    • Guo, B., and W. D. Beavis, 2011 In silico genotyping of the maize nested association mapping population Mol. Breed.. 27: 107-113.
    • (2011) Mol. Breed. , vol.27 , pp. 107-113
    • Guo, B.1    Beavis, W.D.2
  • 41
    • 84878347234 scopus 로고    scopus 로고
    • Family-based association mapping in crop species
    • Guo, B., D. Wang, Z. Guo, and W. D. Beavis, 2013 Family-based association mapping in crop species Theor. Appl. Genet.. 126: 1419-1430.
    • (2013) Theor. Appl. Genet. , vol.126 , pp. 1419-1430
    • Guo, B.1    Wang, D.2    Guo, Z.3    Beavis, W.D.4
  • 42
    • 37249083895 scopus 로고    scopus 로고
    • The impact of genetic relationship information on genome-assisted breeding values
    • Habier, D., R. L. Fernando, and J. C. M. Dekkers, 2007 The impact of genetic relationship information on genome-assisted breeding values Genetics. 177: 2389-2397.
    • (2007) Genetics , vol.177 , pp. 2389-2397
    • Habier, D.1    Fernando, R.L.2    Dekkers, J.C.M.3
  • 43
    • 67849094221 scopus 로고    scopus 로고
    • Genomic selection using low-density marker panels
    • Habier, D., R. L. Fernando, and J. C. M. Dekkers, 2009 Genomic selection using low-density marker panels Genetics. 182: 343-353.
    • (2009) Genetics , vol.182 , pp. 343-353
    • Habier, D.1    Fernando, R.L.2    Dekkers, J.C.M.3
  • 44
    • 77952787476 scopus 로고    scopus 로고
    • The impact of genetic relationship information on genomic breeding values in German Holstein cattle
    • Habier, D., J. Tetens, F. R. Seefried, P. Lichtner, and G. Thaller, 2010 The impact of genetic relationship information on genomic breeding values in German Holstein cattle. Genet. Sel. Evol. 42: 5.
    • (2010) Genet. Sel. Evol. , vol.42 , pp. 5
    • Habier, D.1    Tetens, J.2    Seefried, F.R.3    Lichtner, P.4    Thaller, G.5
  • 46
    • 0003428336 scopus 로고
    • Applied Nonparametric Regression
    • Cambridge University Press, Cambridge, United Kingdom
    • Hardle, W., 1990 Applied Nonparametric Regression. Cambridge University Press, Cambridge, United Kingdom.
    • (1990)
    • Hardle, W.1
  • 47
    • 0000317021 scopus 로고
    • Extension of the Gauss-Markov theorem to include estimation of random effects
    • Harville, D. A., 1976 Extension of the Gauss-Markov theorem to include estimation of random effects. Ann. Stat. 4: 384.
    • (1976) Ann. Stat. , vol.4 , pp. 384
    • Harville, D.A.1
  • 48
    • 0003684449 scopus 로고    scopus 로고
    • The Elements of Statistical Learning: Data Mining, Inference, and Prediction
    • Springer, New York, New York
    • Hastie, T., R. Tibshirani, and J. Friedman, 2009 The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York, New York.
    • (2009)
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 49
    • 0039788502 scopus 로고
    • Estimates of changes in herd environment
    • Henderson, C. R., 1949 Estimates of changes in herd environment. J. Dairy Sci. 32: 706.
    • (1949) J. Dairy Sci. , vol.32 , pp. 706
    • Henderson, C.R.1
  • 50
    • 0001421956 scopus 로고
    • Estimation of Variance and Covariance Components
    • Henderson, C. R., 1953 Estimation of Variance and Covariance Components. Biometrics 9(2): 226-252.
    • (1953) Biometrics , vol.9 , Issue.2 , pp. 226-252
    • Henderson, C.R.1
  • 51
    • 0001198091 scopus 로고
    • The estimation of environmental and genetic trends from records subject to culling
    • Henderson, C. R., O. Kempthorne, S. R. Searle, and C. M. von Krosigk, 1959 The estimation of environmental and genetic trends from records subject to culling. Biometrics 15: 192.
    • (1959) Biometrics , vol.15 , pp. 192
    • Henderson, C.R.1    Kempthorne, O.2    Searle, S.R.3    Von Krosigk, C.M.4
  • 52
    • 0000517795 scopus 로고
    • Selection index and expected genetic advance
    • NAS-NRC Publ 982
    • Henderson, C. R., 1963 Selection index and expected genetic advance. NAS-NRC Publ. 982.
    • (1963)
    • Henderson, C.R.1
  • 53
    • 84954787767 scopus 로고
    • Use of all relatives in intraherd prediction of breeding values and producing abilities
    • Henderson, C. R., 1975a Use of all relatives in intraherd prediction of breeding values and producing abilities J. Dairy Sci.. 58: 1910.
    • (1975) J. Dairy Sci. , vol.58 , pp. 1910
    • Henderson, C.R.1
  • 54
    • 0016704147 scopus 로고
    • Best linear unbiased estimation and prediction under a selection model
    • Henderson, C. R., 1975b Best linear unbiased estimation and prediction under a selection model Biometrics. 31: 423.
    • (1975) Biometrics , vol.31 , pp. 423
    • Henderson, C.R.1
  • 55
    • 0003502266 scopus 로고
    • Applications of Linear Models in Animal Breeding
    • University of Guelph, Guelph, Ontario
    • Henderson, C. R., 1984 Applications of Linear Models in Animal Breeding. University of Guelph, Guelph, Ontario.
    • (1984)
    • Henderson, C.R.1
  • 56
    • 0042894984 scopus 로고
    • Simple Method to Compute Biases and Mean Squared Errors of Linear Estimators and Predictors in a Selection Model Assuming Multivariate Normality
    • Henderson, C. R., 1988 Simple Method to Compute Biases and Mean Squared Errors of Linear Estimators and Predictors in a Selection Model Assuming Multivariate Normality. Journal of Dairy Science 71 (11): 11-3142.
    • (1988) Journal of Dairy Science , vol.71 , Issue.11 , pp. 11-3142
    • Henderson, C.R.1
  • 57
    • 82955176938 scopus 로고    scopus 로고
    • Genomic selection in plant breeding: A comparison of models
    • Heslot, N., H. P. Yang, M. E. Sorrells, and J. L. Jannink, 2012 Genomic selection in plant breeding: A comparison of models Crop Sci.. 52: 146-160.
    • (2012) Crop Sci. , vol.52 , pp. 146-160
    • Heslot, N.1    Yang, H.P.2    Sorrells, M.E.3    Jannink, J.L.4
  • 59
    • 84942484786 scopus 로고
    • Ridge regression: biased estimation for nonorthogonal problems
    • Hoerl, A. E., and R. W. Kennard, 1970a Ridge regression: biased estimation for nonorthogonal problems Technometrics. 12: 55-67.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 60
    • 84942487147 scopus 로고
    • Ridge regression: applications to nonorthogonal problems
    • Hoerl, A. E., and R. W. Kennard, 1970b Ridge regression: applications to nonorthogonal problems Technometrics. 12: 69-82.
    • (1970) Technometrics , vol.12 , pp. 69-82
    • Hoerl, A.E.1    Kennard, R.W.2
  • 61
    • 0030866580 scopus 로고    scopus 로고
    • Pyramiding of bacterial blight resistance genes in rice: markerassisted selection using RFLP and PCR
    • Huang, N., E. R. Angeles, J. Domingo, G. Magpantay, S. Singh et al., 1997 Pyramiding of bacterial blight resistance genes in rice: markerassisted selection using RFLP and PCR Theor. Appl. Genet.. 95: 313-320.
    • (1997) Theor. Appl. Genet. , vol.95 , pp. 313-320
    • Huang, N.1    Angeles, E.R.2    Domingo, J.3    Magpantay, G.4    Singh, S.5
  • 62
    • 84866848293 scopus 로고    scopus 로고
    • Epistasis dominates the genetic architecture of Drosophila quantitative traits
    • Huang, W., S. Richards, M. A. Carbone, D. Zhu, R. R. H. Anholt et al., 2012 Epistasis dominates the genetic architecture of Drosophila quantitative traits Proc. Natl. Acad. Sci. USA. 109: 15553-15559.
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 15553-15559
    • Huang, W.1    Richards, S.2    Carbone, M.A.3    Zhu, D.4    Anholt, R.R.H.5
  • 63
    • 0003891643 scopus 로고
    • The Principles of Psychology
    • H. Holt andCompany,NewYork
    • James,W., 1890 The Principles of Psychology. H. Holt andCompany,NewYork.
    • (1890)
    • James, W.1
  • 65
    • 11244352554 scopus 로고    scopus 로고
    • kernlab - An S4 Package for Kernel Methods in R. J
    • URL
    • Karatzoglou, A., A. Smola, K. Hornik, and A. Zeileis, 2004 kernlab - An S4 Package for Kernel Methods in R. J. Stat. Softw. 11: 1-20 URL http://www.jstatsoft.org/v11/i09/.
    • (2004) Stat. Softw , vol.11 , pp. 1-20
    • Karatzoglou, A.1    Smola, A.2    Hornik, K.3    Zeileis, A.4
  • 66
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for estimation and model selection
    • in, edited by C. S. Mellish. San Francisco, CA: Morgan Kaufmann Publishers
    • Kohavi, R. Mellish, C. S. ed., 1995 A study of cross-validation and bootstrap for estimation and model selection, pp. 1137-1143 in Proceedings of the 14th International Joint Conference on Artificial Intelligence, edited by C. S. Mellish. San Francisco, CA: Morgan Kaufmann Publishers.
    • (1995) Proceedings of the 14th International Joint Conference on Artificial Intelligence , pp. 1137-1143
    • Kohavi, R.1    Mellish, C.S.2
  • 67
    • 77954032966 scopus 로고    scopus 로고
    • Doing Bayesian Data Analysis: A Tutorial with R and BUGS
    • Academic Press, Burlington, MA
    • Kruschke, J. K., 2010 Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press, Burlington, MA.
    • (2010)
    • Kruschke, J.K.1
  • 68
    • 0035312886 scopus 로고    scopus 로고
    • Bayesian approach for neural networks review and case studies
    • Lampinen, J., A. and Vehtari, 2001 Bayesian approach for neural networks review and case studies Neural Netw.. 14: 257-274.
    • (2001) Neural Netw. , vol.14 , pp. 257-274
    • Lampinen, J.1    Vehtari, A.2
  • 69
    • 0031370144 scopus 로고    scopus 로고
    • Lessons in neural network training: Overfitting may be harder than expected
    • in Proceedings of the Fourteenth National Conference on Artificial Intelligence, AAAI-97. AAAI Press, Menlo Park, California
    • Lawrence, S., C. L. Giles, and A. C. Tsoi, 1997 Lessons in neural network training: Overfitting may be harder than expected, pp. 540-545 in Proceedings of the Fourteenth National Conference on Artificial Intelligence, AAAI-97. AAAI Press, Menlo Park, California.
    • (1997) , pp. 540-545
    • Lawrence, S.1    Giles, C.L.2    Tsoi, A.C.3
  • 70
    • 0003476369 scopus 로고
    • Solving Least Squares Problems
    • Prentice Hall, Englewood Cliffs
    • Lawson, C., and R. Hansen, 1974 Solving Least Squares Problems. Prentice Hall, Englewood Cliffs.
    • (1974)
    • Lawson, C.1    Hansen, R.2
  • 71
    • 0003602902 scopus 로고
    • The Genetic Basis of Evolutionary Change
    • Columbia University Press, New York
    • Lewontin, R., 1974 The Genetic Basis of Evolutionary Change. Columbia University Press, New York.
    • (1974)
    • Lewontin, R.1
  • 72
    • 80855131458 scopus 로고    scopus 로고
    • Application of support vector regression to genome-assisted prediction of quantitative traits
    • Long, N., D. Gianola, G. J. M. Rosa, and K. A. Weigel, 2011 Application of support vector regression to genome-assisted prediction of quantitative traits Theor. Appl. Genet.. 123: 1065-1074.
    • (2011) Theor. Appl. Genet. , vol.123 , pp. 1065-1074
    • Long, N.1    Gianola, D.2    Rosa, G.J.M.3    Weigel, K.A.4
  • 73
    • 35248862454 scopus 로고    scopus 로고
    • Support vector machine regression for the prediction of maize hybrid performance
    • Maenhout, S., B. De Baets, G. Haesaert, and E. Van Bockstaele, 2007 Support vector machine regression for the prediction of maize hybrid performance Theor. Appl. Genet.. 115: 1003-1013.
    • (2007) Theor. Appl. Genet. , vol.115 , pp. 1003-1013
    • Maenhout, S.1    De Baets, B.2    Haesaert, G.3    Van Bockstaele, E.4
  • 74
    • 0003829450 scopus 로고
    • Systematics and the Origin of Species
    • Columbia University Press, New York
    • Mayr, E., 1942 Systematics and the Origin of Species. Columbia University Press, New York.
    • (1942)
    • Mayr, E.1
  • 75
    • 51249194645 scopus 로고
    • A logical calculus of ideas immanent in nervous activity
    • McCulloch, W., and W. Pitts, 1943 A logical calculus of ideas immanent in nervous activity Bull. Math. Biophys.. 5: 115-133.
    • (1943) Bull. Math. Biophys. , vol.5 , pp. 115-133
    • McCulloch, W.1    Pitts, W.2
  • 76
    • 0027298249 scopus 로고
    • REML estimation for survival models with frailty
    • McGilchrist, C. A., 1993 REML estimation for survival models with frailty Biometrics. 49: 221-225.
    • (1993) Biometrics , vol.49 , pp. 221-225
    • McGilchrist, C.A.1
  • 77
    • 0031833578 scopus 로고    scopus 로고
    • Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects
    • Melchinger, A. E., H. F. Utz, and C. C. Schon, 1998 Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects Genetics. 149: 383-403.
    • (1998) Genetics , vol.149 , pp. 383-403
    • Melchinger, A.E.1    Utz, H.F.2    Schon, C.C.3
  • 78
    • 0035045051 scopus 로고    scopus 로고
    • Prediction of total genetic value using genome-wide dense marker maps
    • Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard, 2001 Prediction of total genetic value using genome-wide dense marker maps Genetics. 157: 1819-1829.
    • (2001) Genetics , vol.157 , pp. 1819-1829
    • Meuwissen, T.H.E.1    Hayes, B.J.2    Goddard, M.E.3
  • 79
    • 0010676735 scopus 로고    scopus 로고
    • Genome mapping, molecular markers and marker-assisted selection in crop plants
    • Mohan, M., S. Nair, A. Bhagwat, T. G. Krishna, M. Yano et al., 1997 Genome mapping, molecular markers and marker-assisted selection in crop plants Mol. Breed.. 3: 87-103.
    • (1997) Mol. Breed. , vol.3 , pp. 87-103
    • Mohan, M.1    Nair, S.2    Bhagwat, A.3    Krishna, T.G.4    Yano, M.5
  • 80
    • 69449103972 scopus 로고    scopus 로고
    • Epistasis and its implications for personal genetics
    • Moore, J. H., and S. M. Williams, 2009 Epistasis and its implications for personal genetics Am. J. Hum. Genet.. 85: 309-320.
    • (2009) Am. J. Hum. Genet. , vol.85 , pp. 309-320
    • Moore, J.H.1    Williams, S.M.2
  • 81
    • 0000570382 scopus 로고
    • On estimating regression
    • Nadaraya, E. A., 1964 On estimating regression Theory Probab. Appl.. 9: 141-142.
    • (1964) Theory Probab. Appl. , vol.9 , pp. 141-142
    • Nadaraya, E.A.1
  • 82
    • 0003982971 scopus 로고    scopus 로고
    • Numerical Optimization
    • Springer, New York
    • Nocedal, J., and S. J. Wright, 1999 Numerical Optimization. Springer, New York.
    • (1999)
    • Nocedal, J.1    Wright, S.J.2
  • 84
    • 85168500140 scopus 로고    scopus 로고
    • Genomicenabled prediction based on molecular markers and pedigree using the bayesian linear regression package in R
    • Pérez, P., G. de los Campos, J. Crossa, and D. Gianola, 2010 Genomicenabled prediction based on molecular markers and pedigree using the bayesian linear regression package in R Plant Genome. 3: 106-116.
    • (2010) Plant Genome , vol.3 , pp. 106-116
    • Pérez, P.1    De Los Campos, G.2    Crossa, J.3    Gianola, D.4
  • 85
    • 85041751173 scopus 로고    scopus 로고
    • brnn: brnn (Bayesian regularization for feed-forward neural networks)
    • R package version 0.3.
    • Pérez-Rodriguez, P., and D. Gianola, 2013 brnn: brnn (Bayesian regularization for feed-forward neural networks). R package version 0.3. http://CRAN.R-project.org/package=brnn.
    • (2013)
    • Pérez-Rodriguez, P.1    Gianola, D.2
  • 86
    • 84882638573 scopus 로고    scopus 로고
    • Technical Note: An R package for fitting Bayesian regularized neural networks with applications in animal breeding
    • J. Animal Sci. In press
    • Pérez-Rodiguez, P., D. Gianola, G. Rosa, K. Weigel, and J. Crossa, 2013 Technical Note: An R package for fitting Bayesian regularized neural networks with applications in animal breeding. J. Animal Sci. In press.
    • (2013)
    • Pérez-Rodiguez, P.1    Gianola, D.2    Rosa, G.3    Weigel, K.4    Crossa, J.5
  • 87
    • 74549137844 scopus 로고    scopus 로고
    • Bayesian dissection for genetic architecture of traits associated with nitrogen utilization efficiency in rice
    • Piao, Z., M. Li, P. Li, J. Zhang, C. Zhu et al., 2009 Bayesian dissection for genetic architecture of traits associated with nitrogen utilization efficiency in rice Afr. J. Biotechnol.. 8: 6834-6839.
    • (2009) Afr. J. Biotechnol. , vol.8 , pp. 6834-6839
    • Piao, Z.1    Li, M.2    Li, P.3    Zhang, J.4    Zhu, C.5
  • 88
    • 67849083102 scopus 로고    scopus 로고
    • Ridge regression and extensions for genomewide selection in maize
    • Piepho, H. P., 2009 Ridge regression and extensions for genomewide selection in maize Crop Sci.. 49: 1165-1176.
    • (2009) Crop Sci. , vol.49 , pp. 1165-1176
    • Piepho, H.P.1
  • 89
    • 84902578208 scopus 로고    scopus 로고
    • R Development Core Team R Foundation for Statistical Computing, Vienna, Austria
    • R Development Core Team, 2008 R: A language and environment for statistical computingbrnn: brnn (Bayesian regularization for feed-forward neural networks. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.
    • (2008)
  • 90
    • 0031879153 scopus 로고    scopus 로고
    • The evolution of canalization and the breaking of Von Baer's laws: modeling the evolution of development with epistasis
    • Rice, S. H., 1998 The evolution of canalization and the breaking of Von Baer's laws: modeling the evolution of development with epistasis Evolution. 52: 647-656.
    • (1998) Evolution , vol.52 , pp. 647-656
    • Rice, S.H.1
  • 91
    • 84972496336 scopus 로고
    • That BLUP is a good thing: The estimation of random effects
    • Robinson, G. K., 1991 That BLUP is a good thing: The estimation of random effects Stat. Sci.. 6: 15-51.
    • (1991) Stat. Sci. , vol.6 , pp. 15-51
    • Robinson, G.K.1
  • 92
    • 82355175771 scopus 로고    scopus 로고
    • Comparing error minimized extreme learning machines and support vector sequential feed-forward neural networks
    • Romero, E., and R. Alquézar, 2012 Comparing error minimized extreme learning machines and support vector sequential feed-forward neural networks Neural Netw.. 25: 122-129.
    • (2012) Neural Netw. , vol.25 , pp. 122-129
    • Romero, E.1    Alquézar, R.2
  • 93
    • 0012891890 scopus 로고    scopus 로고
    • Semiparametric Regression
    • Cambridge Univ. Press, Cambridge, UK
    • Ruppert, D., M. P. Wand, and R. J. Carroll, 2003 Semiparametric Regression. Cambridge Univ. Press, Cambridge, UK.
    • (2003)
    • Ruppert, D.1    Wand, M.P.2    Carroll, R.J.3
  • 94
    • 0004008564 scopus 로고    scopus 로고
    • Linear Models in Statistics
    • Wiley Series in Probability and Statistics, Hoboken, New Jersey
    • Schaalje, G. B., and A. C. Rencher, 2000 Linear Models in Statistics. Wiley Series in Probability and Statistics, Hoboken, New Jersey.
    • (2000)
    • Schaalje, G.B.1    Rencher, A.C.2
  • 95
    • 18844445877 scopus 로고    scopus 로고
    • Kernel smoothers: an overview of curve estimators for the first graduate course in nonparametric statistics
    • Schucany,W. R., 2004 Kernel smoothers: an overview of curve estimators for the first graduate course in nonparametric statistics Stat. Sci.. 4: 663-675.
    • (2004) Stat. Sci. , vol.4 , pp. 663-675
    • Schucany, W.R.1
  • 96
    • 18844434645 scopus 로고    scopus 로고
    • Density estimation
    • Sheather, S. J., 2004 Density estimation Stat. Sci.. 19: 588-597.
    • (2004) Stat. Sci. , vol.19 , pp. 588-597
    • Sheather, S.J.1
  • 97
    • 0003443397 scopus 로고
    • Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability
    • Chapman and Hall, London
    • Silverman, B. W., 1986 Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability. Chapman and Hall, London.
    • (1986)
    • Silverman, B.W.1
  • 98
    • 0003728053 scopus 로고    scopus 로고
    • Neural Networks for Statistical Modeling
    • International Thomson Computer Press, Boston
    • Smith, M., 1996 Neural Networks for Statistical Modeling. International Thomson Computer Press, Boston.
    • (1996)
    • Smith, M.1
  • 99
    • 68949128341 scopus 로고    scopus 로고
    • Support Vector Machines
    • Springer, New York, New York
    • Steinwart, I., and A. Christmann, 2008 Support Vector Machines. Springer, New York, New York.
    • (2008)
    • Steinwart, I.1    Christmann, A.2
  • 100
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R., 1996 Regression shrinkage and selection via the lasso J. R. Stat. Soc., B. 58: 267-288.
    • (1996) J. R. Stat. Soc., B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 101
    • 4043069967 scopus 로고    scopus 로고
    • Bayesian methods for neural networks and related models
    • Titterington, D. M., 2004 Bayesian methods for neural networks and related models Stat. Sci.. 19: 128-139.
    • (2004) Stat. Sci. , vol.19 , pp. 128-139
    • Titterington, D.M.1
  • 102
    • 77949647346 scopus 로고    scopus 로고
    • LASSO with crossvalidation for genomic selection
    • Usai, M. G., M. E. Goddard, and B. J. Hayes, 2009 LASSO with crossvalidation for genomic selection Genet. Res.. 91: 427-436.
    • (2009) Genet. Res. , vol.91 , pp. 427-436
    • Usai, M.G.1    Goddard, M.E.2    Hayes, B.J.3
  • 103
    • 0003450542 scopus 로고
    • The Nature of Statistical Learning Theory
    • Ed. 2. Springer, New York
    • Vapnik, V., 1995 The Nature of Statistical Learning Theory, Ed. 2. Springer, New York.
    • (1995)
    • Vapnik, V.1
  • 104
    • 68149165759 scopus 로고    scopus 로고
    • A new learning paradigm: Learning using privileged information
    • Vapnik, V., and A. Vashist, 2009 A new learning paradigm: Learning using privileged information Neural Networks. 22: 544-557.
    • (2009) Neural Networks , vol.22 , pp. 544-557
    • Vapnik, V.1    Vashist, A.2
  • 105
    • 0030465739 scopus 로고    scopus 로고
    • Marker-assisted introgression in backcross breeding programs
    • Visscher, P. M., C. S. Haley, and R. Thompson, 1996 Marker-assisted introgression in backcross breeding programs Genetics. 144: 1923-1932.
    • (1996) Genetics , vol.144 , pp. 1923-1932
    • Visscher, P.M.1    Haley, C.S.2    Thompson, R.3
  • 106
    • 51149203927 scopus 로고
    • Canalization of development and inheritance of acquired characters
    • Waddington, C. H., 1949 Canalization of development and inheritance of acquired characters Nature. 150: 563-565.
    • (1949) Nature , vol.150 , pp. 563-565
    • Waddington, C.H.1
  • 108
    • 0003466536 scopus 로고
    • Spline Models for Observational Data
    • Society for Industrial and Applied Mathematics, Philadelphia
    • Wahba, G., 1990 Spline Models for Observational Data. Society for Industrial and Applied Mathematics, Philadelphia.
    • (1990)
    • Wahba, G.1
  • 109
    • 0001762424 scopus 로고
    • Smooth regression analysis
    • Watson, G. S., 1964 Smooth regression analysis Sankhya A.. 26: 359-372.
    • (1964) Sankhya A. , vol.26 , pp. 359-372
    • Watson, G.S.1
  • 110
    • 33847042338 scopus 로고    scopus 로고
    • Epistasis
    • in, London: Nature Publishing Group
    • Wilson, S. R., 2004 Epistasis, pp. 317-320 in Nature Encyclopedia of the Human Genome, Vol. 2. London: Nature Publishing Group.
    • (2004) Nature Encyclopedia of the Human Genome , vol.2 , pp. 317-320
    • Wilson, S.R.1
  • 111
    • 79957976419 scopus 로고    scopus 로고
    • An optimization approach to gene stacking
    • Xu, P., L. Wang, and W. D. Beavis, 2011 An optimization approach to gene stacking Eur. J. Oper. Res.. 214: 168-178.
    • (2011) Eur. J. Oper. Res. , vol.214 , pp. 168-178
    • Xu, P.1    Wang, L.2    Beavis, W.D.3
  • 113
    • 84902578199 scopus 로고    scopus 로고
    • qtlbim: QTL Bayesian Interval Mappin
    • R package version 2.0.5.
    • Yandell, B. S., and Y. Nengjun, with contributions from T. Mehta, S. Banerjee, D. Shriner, et al., 2012 qtlbim: QTL Bayesian Interval Mappin R package version 2.0.5. http://CRAN.R-project.org/package=qtlbim
    • (2012)
    • Yandell, B.S.1    Nengjun, Y.2    Mehta, T.3    Banerjee, S.4    Shriner, D.5
  • 114
    • 39549086997 scopus 로고    scopus 로고
    • Advances in Bayesian multiple quantitative trait loci mapping in experimental crosses
    • Yi, N., and D. Shriner, 2008 Advances in Bayesian multiple quantitative trait loci mapping in experimental crosses. Heredity. 100: 240-252.
    • (2008) Heredity , vol.100 , pp. 240-252
    • Yi, N.1    Shriner, D.2
  • 115
    • 34547095545 scopus 로고    scopus 로고
    • An efficient Bayesian model selection approach for interacting quantitative trait loci models with many effects
    • Yi, N., D. Shriner, S. Banerjee, T. Mehta, D. Pomp et al., 2007 An efficient Bayesian model selection approach for interacting quantitative trait loci models with many effects Genetics. 176: 1865-1877.
    • (2007) Genetics , vol.176 , pp. 1865-1877
    • Yi, N.1    Shriner, D.2    Banerjee, S.3    Mehta, T.4    Pomp, D.5
  • 116
    • 33645064023 scopus 로고    scopus 로고
    • Mouse phenome research: implications of genetic background
    • Yoshiki, A., and K. Moriwaki, 2006 Mouse phenome research: implications of genetic background ILAR J.. 47: 94-102.
    • (2006) ILAR J. , vol.47 , pp. 94-102
    • Yoshiki, A.1    Moriwaki, K.2
  • 117
    • 0029661743 scopus 로고    scopus 로고
    • QTL mapping and quantitative disease resistance in plants
    • Young, N. D., 1996 QTL mapping and quantitative disease resistance in plants Annu. Rev. Phytopathol.. 34: 479-501.
    • (1996) Annu. Rev. Phytopathol. , vol.34 , pp. 479-501
    • Young, N.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.