-
1
-
-
0003958279
-
Mind and Body: The Theories of Their Relation, D
-
Appleton and Company, New York
-
Bain, A., 1873 Mind and Body: The Theories of Their Relation, D. Appleton and Company, New York.
-
(1873)
-
-
Bain, A.1
-
2
-
-
0002348364
-
The power and deceit of QTL experiments: lessons from comparative QTL studies
-
in, edited by D. B. Wilkinson. Washington, DC: American Seed Trade Association
-
Beavis, W. D., 1994 The power and deceit of QTL experiments: lessons from comparative QTL studies, pp. 250-265 in Proceedings of the 49th Annual Corn and Sorghum Research Conference, edited by D. B. Wilkinson. Washington, DC: American Seed Trade Association 250-265.
-
(1994)
Proceedings of the 49th Annual Corn and Sorghum Research Conference
, pp. 250-265
-
-
Beavis, W.D.1
-
3
-
-
0028141065
-
Prediction of maize single-cross performance using RFLPs and information from related hybrids
-
Bernardo, R., 1994 Prediction of maize single-cross performance using RFLPs and information from related hybrids Crop Sci.. 34: 20-25.
-
(1994)
Crop Sci.
, vol.34
, pp. 20-25
-
-
Bernardo, R.1
-
4
-
-
54949113665
-
Molecular markers and selection for complex traits in plants: learning from the last 20 years
-
Bernardo, R., 2008 Molecular markers and selection for complex traits in plants: learning from the last 20 years Crop Sci.. 48: 1649-1664.
-
(2008)
Crop Sci.
, vol.48
, pp. 1649-1664
-
-
Bernardo, R.1
-
5
-
-
0242657013
-
Breeding for Quantitative Traits in Plants
-
Stemma Press, Woodbury, MN
-
Bernardo, R., 2010 Breeding for Quantitative Traits in Plants, Stemma Press, Woodbury, MN.
-
(2010)
-
-
Bernardo, R.1
-
6
-
-
0346250790
-
Practical selection of SVM parameters and noise estimation for SVM regression
-
Cherkassky, V., and Y. Ma, 2004 Practical selection of SVM parameters and noise estimation for SVM regression Neural Netw.. 17: 113-126.
-
(2004)
Neural Netw.
, vol.17
, pp. 113-126
-
-
Cherkassky, V.1
Ma, Y.2
-
7
-
-
0028909487
-
Epistasis and its contribution to genetic variance components
-
Cheverud, J., and E. Routman, 1995 Epistasis and its contribution to genetic variance components Genetics. 139: 1455-1461.
-
(1995)
Genetics
, vol.139
, pp. 1455-1461
-
-
Cheverud, J.1
Routman, E.2
-
8
-
-
84925897233
-
A calibration curve for radiocarbon dates
-
Clark, R. M., 1975 A calibration curve for radiocarbon dates Antiquity. 49: 251-266.
-
(1975)
Antiquity
, vol.49
, pp. 251-266
-
-
Clark, R.M.1
-
9
-
-
0000046644
-
An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present
-
Cockerham, C. C., 1954 An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present Genetics. 39: 859-882.
-
(1954)
Genetics
, vol.39
, pp. 859-882
-
-
Cockerham, C.C.1
-
10
-
-
0347366364
-
Complexity, quantitative traits and plant breeding: a role for simulation modelling in the genetic improvement of crops
-
Quantitative Genetics, Genomics and Plant Breeding
-
Cooper, M., D. W. Podlich, K. P. Micallef, O. S. Smith, N. M. Jensen, et al., 2002 Complexity, quantitative traits and plant breeding: a role for simulation modelling in the genetic improvement of crops. Quantitative Genetics, Genomics and Plant Breeding 143-166.
-
(2002)
, pp. 143-166
-
-
Cooper, M.1
Podlich, D.W.2
Micallef, K.P.3
Smith, O.S.4
Jensen, N.M.5
-
11
-
-
0016919827
-
Restricted maximum likelihood (REML) estimation of variance components in the mixed model
-
Corbeil, R. R., and S. R. Searle, 1976 Restricted maximum likelihood (REML) estimation of variance components in the mixed model Technometrics. 18: 31-38.
-
(1976)
Technometrics
, vol.18
, pp. 31-38
-
-
Corbeil, R.R.1
Searle, S.R.2
-
12
-
-
0036797562
-
Epistasis: what it means,what it doesn't mean, and statistical methods to detect it in humans
-
Cordell,H. J., 2002 Epistasis: what it means,what it doesn't mean, and statistical methods to detect it in humans Hum. Mol. Genet.. 11: 2463-2468.
-
(2002)
Hum. Mol. Genet.
, vol.11
, pp. 2463-2468
-
-
Cordell, H.J.1
-
13
-
-
34249753618
-
Support-vector networks
-
Cortes, C., and V. Vapnik, 1995 Support-vector networks Machine Leaming. 20: 273-297.
-
(1995)
Machine Leaming
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
14
-
-
0003798635
-
An Introduction to Support Vector Machines and Other Kernel-based Learning Methods
-
Cambridge University Press, New York
-
Cristianini, N., and J. Shawe-Taylor, 2000 An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Cambridge University Press, New York.
-
(2000)
-
-
Cristianini, N.1
Shawe-Taylor, J.2
-
15
-
-
77951542842
-
On epistasis: why it is unimportant in polygenic directional selection
-
Crow, J. F., 2010 On epistasis: why it is unimportant in polygenic directional selection. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365(1544): 1241-1244.
-
(2010)
Philos. Trans. R. Soc. Lond. B Biol. Sci.
, vol.365
, Issue.1544
, pp. 1241-1244
-
-
Crow, J.F.1
-
16
-
-
77958581195
-
The impact of genetic architecture on genome-wide evaluation methods
-
Daetwyler, H. D., R. Pong-Wong, B. Villanueva, and J. A. Woolliams, 2010 The impact of genetic architecture on genome-wide evaluation methods Genetics. 185: 1021-1031.
-
(2010)
Genetics
, vol.185
, pp. 1021-1031
-
-
Daetwyler, H.D.1
Pong-Wong, R.2
Villanueva, B.3
Woolliams, J.A.4
-
17
-
-
27144542783
-
Ridge regression revisited
-
De Boer, P. M. C., and C. M. Hafner, 2005 Ridge regression revisited. Stat. Neerl. 59(4): 498-505.
-
(2005)
Stat. Neerl.
, vol.59
, Issue.4
, pp. 498-505
-
-
De Boer, P.M.C.1
Hafner, C.M.2
-
18
-
-
79957472742
-
BLR: Bayesian Linear Regression
-
R package version 1.2.
-
De los Campos, G., and P. P. Rodriguez, 2010 BLR: Bayesian Linear Regression. R package version 1.2. http://CRAN.R-project.org/package=BLR
-
(2010)
-
-
De Los Campos, G.1
Rodriguez, P.P.2
-
19
-
-
67849130524
-
Predicting quantitative traits with regression models for dense molecular markers and pedigrees
-
De los Campos, G., H. Naya, D. Gianola, J. Crossa, A. Legarra et al., 2009 Predicting quantitative traits with regression models for dense molecular markers and pedigrees. Genetics 182(1): 375-385.
-
(2009)
Genetics
, vol.182
, Issue.1
, pp. 375-385
-
-
De Los Campos, G.1
Naya, H.2
Gianola, D.3
Crossa, J.4
Legarra, A.5
-
20
-
-
78649317608
-
Predicting genetic predisposition in humans: the promise of whole-genome markers
-
De los Campos, G., D. Gianola, and D. B. Allison, 2010a Predicting genetic predisposition in humans: the promise of whole-genome markers Nat. Rev. Genet.. 11: 880-886.
-
(2010)
Nat. Rev. Genet.
, vol.11
, pp. 880-886
-
-
De Los Campos, G.1
Gianola, D.2
Allison, D.B.3
-
21
-
-
78951477718
-
Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods
-
De los Campos, G., D. Gianola, G. J. M. Rosa, K. A.Weigel, and J. Crossa, 2010b Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods Genet. Res.. 92: 295-308.
-
(2010)
Genet. Res.
, vol.92
, pp. 295-308
-
-
De Los Campos, G.1
Gianola, D.2
Rosa, G.J.M.3
Weigel, K.A.4
Crossa, J.5
-
22
-
-
84876390765
-
Whole-genome regression and prediction methods applied to plant and animal breeding
-
De los Campos, G., J. M. Hickey, R. Pong-Wong, H. D. Daetwyler, and M. P. L. Calus, 2013 Whole-genome regression and prediction methods applied to plant and animal breeding Genetics. 193: 327-345.
-
(2013)
Genetics
, vol.193
, pp. 327-345
-
-
De Los Campos, G.1
Hickey, J.M.2
Pong-Wong, R.3
Daetwyler, H.D.4
Calus, M.P.L.5
-
23
-
-
0004287113
-
Genetics of the Evolutionary Process
-
Columbia University Press, New York
-
Dobzhansky, T., 1937 Genetics of the Evolutionary Process. Columbia University Press, New York.
-
(1937)
-
-
Dobzhansky, T.1
-
24
-
-
85136354327
-
Ridge regression and other kernels for genomic selection with R package rrBLUP
-
Endelman, J. B., 2011 Ridge regression and other kernels for genomic selection with R package rrBLUP Plant Genome. 4: 250-255.
-
(2011)
Plant Genome
, vol.4
, pp. 250-255
-
-
Endelman, J.B.1
-
25
-
-
3242708140
-
Least angle regression
-
Efron, B., T. Hastie, I. Johnstone, and R. Tibshirani, 2004 Least angle regression Ann. Stat.. 32: 407-499.
-
(2004)
Ann. Stat.
, vol.32
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
26
-
-
0003995062
-
Introduction to Quantitative Genetics
-
Pearson Education Limited, Essex, England
-
Falconer, D. S., and T. F. C. Mackay, 1996 Introduction to Quantitative Genetics, Pearson Education Limited, Essex, England.
-
(1996)
-
-
Falconer, D.S.1
Mackay, T.F.C.2
-
27
-
-
28444464728
-
Linear Models with R
-
CRC Press, Boca Raton, FL
-
Faraway, J. J., 2006 Linear Models with R. CRC Press, Boca Raton, FL.
-
(2006)
-
-
Faraway, J.J.1
-
28
-
-
79952090305
-
GenSel-User manual for a portfolio of genomic selection related analyses
-
Animal Breeding and Genetics, Iowa State University, Ames. Available at
-
Fernando, R. L., and D. J. Garrick, 2008 GenSel-User manual for a portfolio of genomic selection related analyses. Animal Breeding and Genetics, Iowa State University, Ames. Available at: http://taurus.ansci.iastate.edu/gensel.
-
(2008)
-
-
Fernando, R.L.1
Garrick, D.J.2
-
29
-
-
0001244316
-
Marker assisted selection using best linear unbiased prediction
-
Fernando, R. L., and M. Grossman, 1989 Marker assisted selection using best linear unbiased prediction Genet. Sel. Evol.. 21: 467-477.
-
(1989)
Genet. Sel. Evol.
, vol.21
, pp. 467-477
-
-
Fernando, R.L.1
Grossman, M.2
-
30
-
-
84971185409
-
The correlation between relatives on the supposition of Mendelian inheritance
-
Fisher, R. A., 1918 The correlation between relatives on the supposition of Mendelian inheritance Trans. R. Soc. Edinb.. 52: 399-433.
-
(1918)
Trans. R. Soc. Edinb.
, vol.52
, pp. 399-433
-
-
Fisher, R.A.1
-
31
-
-
66049159816
-
Genetic architecture of quantitative traits in mice, flies, and humans
-
Flint, J., and T. F. C. Mackay, 2009 Genetic architecture of quantitative traits in mice, flies, and humans Genome Res.. 19: 723-733.
-
(2009)
Genome Res.
, vol.19
, pp. 723-733
-
-
Flint, J.1
Mackay, T.F.C.2
-
32
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
URL
-
Friedman, J., T. Hastie, and R. Tibshirani, 2010 Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33: 1-22 URL http://www.jstatsoft.org/v33/i01/.
-
(2010)
J. Stat. Softw.
, vol.33
, pp. 1-22
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
33
-
-
0004012196
-
Bayesian Data Analysis
-
Chapman and Hall/CRC, Boca Raton, FL
-
Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin, 2003 Bayesian Data Analysis. Chapman and Hall/CRC, Boca Raton, FL.
-
(2003)
-
-
Gelman, A.1
Carlin, J.B.2
Stern, H.S.3
Rubin, D.B.4
-
34
-
-
0442309436
-
The variable selection problem
-
George, E. I., 2000 The variable selection problem J. Am. Stat. Assoc.. 95: 1304-1308.
-
(2000)
J. Am. Stat. Assoc.
, vol.95
, pp. 1304-1308
-
-
George, E.I.1
-
35
-
-
33746424900
-
Genomic-assisted prediction of genetic value with semiparametric procedures
-
Gianola, D., R. L. Fernando, and A. Stella, 2006 Genomic-assisted prediction of genetic value with semiparametric procedures Genetics. 173: 1761-1776.
-
(2006)
Genetics
, vol.173
, pp. 1761-1776
-
-
Gianola, D.1
Fernando, R.L.2
Stella, A.3
-
36
-
-
70350136780
-
Additive genetic variability and the bayesian alphabet
-
Gianola, D., G. de los Campos, W. G. Hill, E. Manfredi, and R. Fernando, 2009 Additive genetic variability and the bayesian alphabet Genetics. 183: 347-363.
-
(2009)
Genetics
, vol.183
, pp. 347-363
-
-
Gianola, D.1
De Los Campos, G.2
Hill, W.G.3
Manfredi, E.4
Fernando, R.5
-
37
-
-
84902578206
-
Statistical learning methods for genome-based analysis of quantitative traits
-
World Genetic Congress Applied to Livestock Production. Leipzig, Germany, CD-ROM Communication 0014
-
Gianola, D., G. de los Campos, O. Gonzlez-Recio, N. Long, H. Okut et al., 2010 Statistical learning methods for genome-based analysis of quantitative traits. World Genetic Congress Applied to Livestock Production. Leipzig, Germany, CD-ROM Communication 0014.
-
(2010)
-
-
Gianola, D.1
De Los Campos, G.2
Gonzlez-Recio, O.3
Long, N.4
Okut, H.5
-
38
-
-
80053594474
-
Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat
-
Gianola, D., H. Okut, K. A. Weigel, and G. J. M. Rosa, 2011 Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat. BMC Genet. 12: 87.
-
(2011)
BMC Genet.
, vol.12
, pp. 87
-
-
Gianola, D.1
Okut, H.2
Weigel, K.A.3
Rosa, G.J.M.4
-
39
-
-
0033949025
-
Quantitative trait loci and gene interaction: the quantitative genetics of metapopulation
-
Goodnight, C. J., 2000 Quantitative trait loci and gene interaction: the quantitative genetics of metapopulation Heredity. 84: 587-598.
-
(2000)
Heredity
, vol.84
, pp. 587-598
-
-
Goodnight, C.J.1
-
40
-
-
78650733063
-
In silico genotyping of the maize nested association mapping population
-
Guo, B., and W. D. Beavis, 2011 In silico genotyping of the maize nested association mapping population Mol. Breed.. 27: 107-113.
-
(2011)
Mol. Breed.
, vol.27
, pp. 107-113
-
-
Guo, B.1
Beavis, W.D.2
-
41
-
-
84878347234
-
Family-based association mapping in crop species
-
Guo, B., D. Wang, Z. Guo, and W. D. Beavis, 2013 Family-based association mapping in crop species Theor. Appl. Genet.. 126: 1419-1430.
-
(2013)
Theor. Appl. Genet.
, vol.126
, pp. 1419-1430
-
-
Guo, B.1
Wang, D.2
Guo, Z.3
Beavis, W.D.4
-
42
-
-
37249083895
-
The impact of genetic relationship information on genome-assisted breeding values
-
Habier, D., R. L. Fernando, and J. C. M. Dekkers, 2007 The impact of genetic relationship information on genome-assisted breeding values Genetics. 177: 2389-2397.
-
(2007)
Genetics
, vol.177
, pp. 2389-2397
-
-
Habier, D.1
Fernando, R.L.2
Dekkers, J.C.M.3
-
43
-
-
67849094221
-
Genomic selection using low-density marker panels
-
Habier, D., R. L. Fernando, and J. C. M. Dekkers, 2009 Genomic selection using low-density marker panels Genetics. 182: 343-353.
-
(2009)
Genetics
, vol.182
, pp. 343-353
-
-
Habier, D.1
Fernando, R.L.2
Dekkers, J.C.M.3
-
44
-
-
77952787476
-
The impact of genetic relationship information on genomic breeding values in German Holstein cattle
-
Habier, D., J. Tetens, F. R. Seefried, P. Lichtner, and G. Thaller, 2010 The impact of genetic relationship information on genomic breeding values in German Holstein cattle. Genet. Sel. Evol. 42: 5.
-
(2010)
Genet. Sel. Evol.
, vol.42
, pp. 5
-
-
Habier, D.1
Tetens, J.2
Seefried, F.R.3
Lichtner, P.4
Thaller, G.5
-
45
-
-
79956199958
-
Extension of the bayesian alphabet for genomic selection
-
Habier, D., R. L. Fernando, K. Kizilkaya, and D. J. Garrick, 2011 Extension of the bayesian alphabet for genomic selection. BMC Bioinformatics 12: 186.
-
(2011)
BMC Bioinformatics
, vol.12
, pp. 186
-
-
Habier, D.1
Fernando, R.L.2
Kizilkaya, K.3
Garrick, D.J.4
-
46
-
-
0003428336
-
Applied Nonparametric Regression
-
Cambridge University Press, Cambridge, United Kingdom
-
Hardle, W., 1990 Applied Nonparametric Regression. Cambridge University Press, Cambridge, United Kingdom.
-
(1990)
-
-
Hardle, W.1
-
47
-
-
0000317021
-
Extension of the Gauss-Markov theorem to include estimation of random effects
-
Harville, D. A., 1976 Extension of the Gauss-Markov theorem to include estimation of random effects. Ann. Stat. 4: 384.
-
(1976)
Ann. Stat.
, vol.4
, pp. 384
-
-
Harville, D.A.1
-
48
-
-
0003684449
-
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
Springer, New York, New York
-
Hastie, T., R. Tibshirani, and J. Friedman, 2009 The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York, New York.
-
(2009)
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
49
-
-
0039788502
-
Estimates of changes in herd environment
-
Henderson, C. R., 1949 Estimates of changes in herd environment. J. Dairy Sci. 32: 706.
-
(1949)
J. Dairy Sci.
, vol.32
, pp. 706
-
-
Henderson, C.R.1
-
50
-
-
0001421956
-
Estimation of Variance and Covariance Components
-
Henderson, C. R., 1953 Estimation of Variance and Covariance Components. Biometrics 9(2): 226-252.
-
(1953)
Biometrics
, vol.9
, Issue.2
, pp. 226-252
-
-
Henderson, C.R.1
-
51
-
-
0001198091
-
The estimation of environmental and genetic trends from records subject to culling
-
Henderson, C. R., O. Kempthorne, S. R. Searle, and C. M. von Krosigk, 1959 The estimation of environmental and genetic trends from records subject to culling. Biometrics 15: 192.
-
(1959)
Biometrics
, vol.15
, pp. 192
-
-
Henderson, C.R.1
Kempthorne, O.2
Searle, S.R.3
Von Krosigk, C.M.4
-
52
-
-
0000517795
-
Selection index and expected genetic advance
-
NAS-NRC Publ 982
-
Henderson, C. R., 1963 Selection index and expected genetic advance. NAS-NRC Publ. 982.
-
(1963)
-
-
Henderson, C.R.1
-
53
-
-
84954787767
-
Use of all relatives in intraherd prediction of breeding values and producing abilities
-
Henderson, C. R., 1975a Use of all relatives in intraherd prediction of breeding values and producing abilities J. Dairy Sci.. 58: 1910.
-
(1975)
J. Dairy Sci.
, vol.58
, pp. 1910
-
-
Henderson, C.R.1
-
54
-
-
0016704147
-
Best linear unbiased estimation and prediction under a selection model
-
Henderson, C. R., 1975b Best linear unbiased estimation and prediction under a selection model Biometrics. 31: 423.
-
(1975)
Biometrics
, vol.31
, pp. 423
-
-
Henderson, C.R.1
-
55
-
-
0003502266
-
Applications of Linear Models in Animal Breeding
-
University of Guelph, Guelph, Ontario
-
Henderson, C. R., 1984 Applications of Linear Models in Animal Breeding. University of Guelph, Guelph, Ontario.
-
(1984)
-
-
Henderson, C.R.1
-
56
-
-
0042894984
-
Simple Method to Compute Biases and Mean Squared Errors of Linear Estimators and Predictors in a Selection Model Assuming Multivariate Normality
-
Henderson, C. R., 1988 Simple Method to Compute Biases and Mean Squared Errors of Linear Estimators and Predictors in a Selection Model Assuming Multivariate Normality. Journal of Dairy Science 71 (11): 11-3142.
-
(1988)
Journal of Dairy Science
, vol.71
, Issue.11
, pp. 11-3142
-
-
Henderson, C.R.1
-
57
-
-
82955176938
-
Genomic selection in plant breeding: A comparison of models
-
Heslot, N., H. P. Yang, M. E. Sorrells, and J. L. Jannink, 2012 Genomic selection in plant breeding: A comparison of models Crop Sci.. 52: 146-160.
-
(2012)
Crop Sci.
, vol.52
, pp. 146-160
-
-
Heslot, N.1
Yang, H.P.2
Sorrells, M.E.3
Jannink, J.L.4
-
59
-
-
84942484786
-
Ridge regression: biased estimation for nonorthogonal problems
-
Hoerl, A. E., and R. W. Kennard, 1970a Ridge regression: biased estimation for nonorthogonal problems Technometrics. 12: 55-67.
-
(1970)
Technometrics
, vol.12
, pp. 55-67
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
60
-
-
84942487147
-
Ridge regression: applications to nonorthogonal problems
-
Hoerl, A. E., and R. W. Kennard, 1970b Ridge regression: applications to nonorthogonal problems Technometrics. 12: 69-82.
-
(1970)
Technometrics
, vol.12
, pp. 69-82
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
61
-
-
0030866580
-
Pyramiding of bacterial blight resistance genes in rice: markerassisted selection using RFLP and PCR
-
Huang, N., E. R. Angeles, J. Domingo, G. Magpantay, S. Singh et al., 1997 Pyramiding of bacterial blight resistance genes in rice: markerassisted selection using RFLP and PCR Theor. Appl. Genet.. 95: 313-320.
-
(1997)
Theor. Appl. Genet.
, vol.95
, pp. 313-320
-
-
Huang, N.1
Angeles, E.R.2
Domingo, J.3
Magpantay, G.4
Singh, S.5
-
62
-
-
84866848293
-
Epistasis dominates the genetic architecture of Drosophila quantitative traits
-
Huang, W., S. Richards, M. A. Carbone, D. Zhu, R. R. H. Anholt et al., 2012 Epistasis dominates the genetic architecture of Drosophila quantitative traits Proc. Natl. Acad. Sci. USA. 109: 15553-15559.
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 15553-15559
-
-
Huang, W.1
Richards, S.2
Carbone, M.A.3
Zhu, D.4
Anholt, R.R.H.5
-
63
-
-
0003891643
-
The Principles of Psychology
-
H. Holt andCompany,NewYork
-
James,W., 1890 The Principles of Psychology. H. Holt andCompany,NewYork.
-
(1890)
-
-
James, W.1
-
64
-
-
0004113694
-
The Theory and Practice of Econometrics
-
New York: Wiley
-
Judge, G. G., W. E. Griffiths, R. C. Hill, H. Lutkepohl, and T.-C. Lee, 1985 The Theory and Practice of Econometrics. New York: Wiley.
-
(1985)
-
-
Judge, G.G.1
Griffiths, W.E.2
Hill, R.C.3
Lutkepohl, H.4
Lee, T.-C.5
-
65
-
-
11244352554
-
kernlab - An S4 Package for Kernel Methods in R. J
-
URL
-
Karatzoglou, A., A. Smola, K. Hornik, and A. Zeileis, 2004 kernlab - An S4 Package for Kernel Methods in R. J. Stat. Softw. 11: 1-20 URL http://www.jstatsoft.org/v11/i09/.
-
(2004)
Stat. Softw
, vol.11
, pp. 1-20
-
-
Karatzoglou, A.1
Smola, A.2
Hornik, K.3
Zeileis, A.4
-
66
-
-
85164392958
-
A study of cross-validation and bootstrap for estimation and model selection
-
in, edited by C. S. Mellish. San Francisco, CA: Morgan Kaufmann Publishers
-
Kohavi, R. Mellish, C. S. ed., 1995 A study of cross-validation and bootstrap for estimation and model selection, pp. 1137-1143 in Proceedings of the 14th International Joint Conference on Artificial Intelligence, edited by C. S. Mellish. San Francisco, CA: Morgan Kaufmann Publishers.
-
(1995)
Proceedings of the 14th International Joint Conference on Artificial Intelligence
, pp. 1137-1143
-
-
Kohavi, R.1
Mellish, C.S.2
-
67
-
-
77954032966
-
Doing Bayesian Data Analysis: A Tutorial with R and BUGS
-
Academic Press, Burlington, MA
-
Kruschke, J. K., 2010 Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press, Burlington, MA.
-
(2010)
-
-
Kruschke, J.K.1
-
68
-
-
0035312886
-
Bayesian approach for neural networks review and case studies
-
Lampinen, J., A. and Vehtari, 2001 Bayesian approach for neural networks review and case studies Neural Netw.. 14: 257-274.
-
(2001)
Neural Netw.
, vol.14
, pp. 257-274
-
-
Lampinen, J.1
Vehtari, A.2
-
69
-
-
0031370144
-
Lessons in neural network training: Overfitting may be harder than expected
-
in Proceedings of the Fourteenth National Conference on Artificial Intelligence, AAAI-97. AAAI Press, Menlo Park, California
-
Lawrence, S., C. L. Giles, and A. C. Tsoi, 1997 Lessons in neural network training: Overfitting may be harder than expected, pp. 540-545 in Proceedings of the Fourteenth National Conference on Artificial Intelligence, AAAI-97. AAAI Press, Menlo Park, California.
-
(1997)
, pp. 540-545
-
-
Lawrence, S.1
Giles, C.L.2
Tsoi, A.C.3
-
70
-
-
0003476369
-
Solving Least Squares Problems
-
Prentice Hall, Englewood Cliffs
-
Lawson, C., and R. Hansen, 1974 Solving Least Squares Problems. Prentice Hall, Englewood Cliffs.
-
(1974)
-
-
Lawson, C.1
Hansen, R.2
-
71
-
-
0003602902
-
The Genetic Basis of Evolutionary Change
-
Columbia University Press, New York
-
Lewontin, R., 1974 The Genetic Basis of Evolutionary Change. Columbia University Press, New York.
-
(1974)
-
-
Lewontin, R.1
-
72
-
-
80855131458
-
Application of support vector regression to genome-assisted prediction of quantitative traits
-
Long, N., D. Gianola, G. J. M. Rosa, and K. A. Weigel, 2011 Application of support vector regression to genome-assisted prediction of quantitative traits Theor. Appl. Genet.. 123: 1065-1074.
-
(2011)
Theor. Appl. Genet.
, vol.123
, pp. 1065-1074
-
-
Long, N.1
Gianola, D.2
Rosa, G.J.M.3
Weigel, K.A.4
-
73
-
-
35248862454
-
Support vector machine regression for the prediction of maize hybrid performance
-
Maenhout, S., B. De Baets, G. Haesaert, and E. Van Bockstaele, 2007 Support vector machine regression for the prediction of maize hybrid performance Theor. Appl. Genet.. 115: 1003-1013.
-
(2007)
Theor. Appl. Genet.
, vol.115
, pp. 1003-1013
-
-
Maenhout, S.1
De Baets, B.2
Haesaert, G.3
Van Bockstaele, E.4
-
74
-
-
0003829450
-
Systematics and the Origin of Species
-
Columbia University Press, New York
-
Mayr, E., 1942 Systematics and the Origin of Species. Columbia University Press, New York.
-
(1942)
-
-
Mayr, E.1
-
75
-
-
51249194645
-
A logical calculus of ideas immanent in nervous activity
-
McCulloch, W., and W. Pitts, 1943 A logical calculus of ideas immanent in nervous activity Bull. Math. Biophys.. 5: 115-133.
-
(1943)
Bull. Math. Biophys.
, vol.5
, pp. 115-133
-
-
McCulloch, W.1
Pitts, W.2
-
76
-
-
0027298249
-
REML estimation for survival models with frailty
-
McGilchrist, C. A., 1993 REML estimation for survival models with frailty Biometrics. 49: 221-225.
-
(1993)
Biometrics
, vol.49
, pp. 221-225
-
-
McGilchrist, C.A.1
-
77
-
-
0031833578
-
Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects
-
Melchinger, A. E., H. F. Utz, and C. C. Schon, 1998 Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects Genetics. 149: 383-403.
-
(1998)
Genetics
, vol.149
, pp. 383-403
-
-
Melchinger, A.E.1
Utz, H.F.2
Schon, C.C.3
-
78
-
-
0035045051
-
Prediction of total genetic value using genome-wide dense marker maps
-
Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard, 2001 Prediction of total genetic value using genome-wide dense marker maps Genetics. 157: 1819-1829.
-
(2001)
Genetics
, vol.157
, pp. 1819-1829
-
-
Meuwissen, T.H.E.1
Hayes, B.J.2
Goddard, M.E.3
-
79
-
-
0010676735
-
Genome mapping, molecular markers and marker-assisted selection in crop plants
-
Mohan, M., S. Nair, A. Bhagwat, T. G. Krishna, M. Yano et al., 1997 Genome mapping, molecular markers and marker-assisted selection in crop plants Mol. Breed.. 3: 87-103.
-
(1997)
Mol. Breed.
, vol.3
, pp. 87-103
-
-
Mohan, M.1
Nair, S.2
Bhagwat, A.3
Krishna, T.G.4
Yano, M.5
-
80
-
-
69449103972
-
Epistasis and its implications for personal genetics
-
Moore, J. H., and S. M. Williams, 2009 Epistasis and its implications for personal genetics Am. J. Hum. Genet.. 85: 309-320.
-
(2009)
Am. J. Hum. Genet.
, vol.85
, pp. 309-320
-
-
Moore, J.H.1
Williams, S.M.2
-
81
-
-
0000570382
-
On estimating regression
-
Nadaraya, E. A., 1964 On estimating regression Theory Probab. Appl.. 9: 141-142.
-
(1964)
Theory Probab. Appl.
, vol.9
, pp. 141-142
-
-
Nadaraya, E.A.1
-
82
-
-
0003982971
-
Numerical Optimization
-
Springer, New York
-
Nocedal, J., and S. J. Wright, 1999 Numerical Optimization. Springer, New York.
-
(1999)
-
-
Nocedal, J.1
Wright, S.J.2
-
84
-
-
85168500140
-
Genomicenabled prediction based on molecular markers and pedigree using the bayesian linear regression package in R
-
Pérez, P., G. de los Campos, J. Crossa, and D. Gianola, 2010 Genomicenabled prediction based on molecular markers and pedigree using the bayesian linear regression package in R Plant Genome. 3: 106-116.
-
(2010)
Plant Genome
, vol.3
, pp. 106-116
-
-
Pérez, P.1
De Los Campos, G.2
Crossa, J.3
Gianola, D.4
-
85
-
-
85041751173
-
brnn: brnn (Bayesian regularization for feed-forward neural networks)
-
R package version 0.3.
-
Pérez-Rodriguez, P., and D. Gianola, 2013 brnn: brnn (Bayesian regularization for feed-forward neural networks). R package version 0.3. http://CRAN.R-project.org/package=brnn.
-
(2013)
-
-
Pérez-Rodriguez, P.1
Gianola, D.2
-
86
-
-
84882638573
-
Technical Note: An R package for fitting Bayesian regularized neural networks with applications in animal breeding
-
J. Animal Sci. In press
-
Pérez-Rodiguez, P., D. Gianola, G. Rosa, K. Weigel, and J. Crossa, 2013 Technical Note: An R package for fitting Bayesian regularized neural networks with applications in animal breeding. J. Animal Sci. In press.
-
(2013)
-
-
Pérez-Rodiguez, P.1
Gianola, D.2
Rosa, G.3
Weigel, K.4
Crossa, J.5
-
87
-
-
74549137844
-
Bayesian dissection for genetic architecture of traits associated with nitrogen utilization efficiency in rice
-
Piao, Z., M. Li, P. Li, J. Zhang, C. Zhu et al., 2009 Bayesian dissection for genetic architecture of traits associated with nitrogen utilization efficiency in rice Afr. J. Biotechnol.. 8: 6834-6839.
-
(2009)
Afr. J. Biotechnol.
, vol.8
, pp. 6834-6839
-
-
Piao, Z.1
Li, M.2
Li, P.3
Zhang, J.4
Zhu, C.5
-
88
-
-
67849083102
-
Ridge regression and extensions for genomewide selection in maize
-
Piepho, H. P., 2009 Ridge regression and extensions for genomewide selection in maize Crop Sci.. 49: 1165-1176.
-
(2009)
Crop Sci.
, vol.49
, pp. 1165-1176
-
-
Piepho, H.P.1
-
89
-
-
84902578208
-
-
R Development Core Team R Foundation for Statistical Computing, Vienna, Austria
-
R Development Core Team, 2008 R: A language and environment for statistical computingbrnn: brnn (Bayesian regularization for feed-forward neural networks. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.
-
(2008)
-
-
-
90
-
-
0031879153
-
The evolution of canalization and the breaking of Von Baer's laws: modeling the evolution of development with epistasis
-
Rice, S. H., 1998 The evolution of canalization and the breaking of Von Baer's laws: modeling the evolution of development with epistasis Evolution. 52: 647-656.
-
(1998)
Evolution
, vol.52
, pp. 647-656
-
-
Rice, S.H.1
-
91
-
-
84972496336
-
That BLUP is a good thing: The estimation of random effects
-
Robinson, G. K., 1991 That BLUP is a good thing: The estimation of random effects Stat. Sci.. 6: 15-51.
-
(1991)
Stat. Sci.
, vol.6
, pp. 15-51
-
-
Robinson, G.K.1
-
92
-
-
82355175771
-
Comparing error minimized extreme learning machines and support vector sequential feed-forward neural networks
-
Romero, E., and R. Alquézar, 2012 Comparing error minimized extreme learning machines and support vector sequential feed-forward neural networks Neural Netw.. 25: 122-129.
-
(2012)
Neural Netw.
, vol.25
, pp. 122-129
-
-
Romero, E.1
Alquézar, R.2
-
93
-
-
0012891890
-
Semiparametric Regression
-
Cambridge Univ. Press, Cambridge, UK
-
Ruppert, D., M. P. Wand, and R. J. Carroll, 2003 Semiparametric Regression. Cambridge Univ. Press, Cambridge, UK.
-
(2003)
-
-
Ruppert, D.1
Wand, M.P.2
Carroll, R.J.3
-
94
-
-
0004008564
-
Linear Models in Statistics
-
Wiley Series in Probability and Statistics, Hoboken, New Jersey
-
Schaalje, G. B., and A. C. Rencher, 2000 Linear Models in Statistics. Wiley Series in Probability and Statistics, Hoboken, New Jersey.
-
(2000)
-
-
Schaalje, G.B.1
Rencher, A.C.2
-
95
-
-
18844445877
-
Kernel smoothers: an overview of curve estimators for the first graduate course in nonparametric statistics
-
Schucany,W. R., 2004 Kernel smoothers: an overview of curve estimators for the first graduate course in nonparametric statistics Stat. Sci.. 4: 663-675.
-
(2004)
Stat. Sci.
, vol.4
, pp. 663-675
-
-
Schucany, W.R.1
-
96
-
-
18844434645
-
Density estimation
-
Sheather, S. J., 2004 Density estimation Stat. Sci.. 19: 588-597.
-
(2004)
Stat. Sci.
, vol.19
, pp. 588-597
-
-
Sheather, S.J.1
-
97
-
-
0003443397
-
Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability
-
Chapman and Hall, London
-
Silverman, B. W., 1986 Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability. Chapman and Hall, London.
-
(1986)
-
-
Silverman, B.W.1
-
98
-
-
0003728053
-
Neural Networks for Statistical Modeling
-
International Thomson Computer Press, Boston
-
Smith, M., 1996 Neural Networks for Statistical Modeling. International Thomson Computer Press, Boston.
-
(1996)
-
-
Smith, M.1
-
99
-
-
68949128341
-
Support Vector Machines
-
Springer, New York, New York
-
Steinwart, I., and A. Christmann, 2008 Support Vector Machines. Springer, New York, New York.
-
(2008)
-
-
Steinwart, I.1
Christmann, A.2
-
100
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
Tibshirani, R., 1996 Regression shrinkage and selection via the lasso J. R. Stat. Soc., B. 58: 267-288.
-
(1996)
J. R. Stat. Soc., B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
101
-
-
4043069967
-
Bayesian methods for neural networks and related models
-
Titterington, D. M., 2004 Bayesian methods for neural networks and related models Stat. Sci.. 19: 128-139.
-
(2004)
Stat. Sci.
, vol.19
, pp. 128-139
-
-
Titterington, D.M.1
-
102
-
-
77949647346
-
LASSO with crossvalidation for genomic selection
-
Usai, M. G., M. E. Goddard, and B. J. Hayes, 2009 LASSO with crossvalidation for genomic selection Genet. Res.. 91: 427-436.
-
(2009)
Genet. Res.
, vol.91
, pp. 427-436
-
-
Usai, M.G.1
Goddard, M.E.2
Hayes, B.J.3
-
103
-
-
0003450542
-
The Nature of Statistical Learning Theory
-
Ed. 2. Springer, New York
-
Vapnik, V., 1995 The Nature of Statistical Learning Theory, Ed. 2. Springer, New York.
-
(1995)
-
-
Vapnik, V.1
-
104
-
-
68149165759
-
A new learning paradigm: Learning using privileged information
-
Vapnik, V., and A. Vashist, 2009 A new learning paradigm: Learning using privileged information Neural Networks. 22: 544-557.
-
(2009)
Neural Networks
, vol.22
, pp. 544-557
-
-
Vapnik, V.1
Vashist, A.2
-
105
-
-
0030465739
-
Marker-assisted introgression in backcross breeding programs
-
Visscher, P. M., C. S. Haley, and R. Thompson, 1996 Marker-assisted introgression in backcross breeding programs Genetics. 144: 1923-1932.
-
(1996)
Genetics
, vol.144
, pp. 1923-1932
-
-
Visscher, P.M.1
Haley, C.S.2
Thompson, R.3
-
106
-
-
51149203927
-
Canalization of development and inheritance of acquired characters
-
Waddington, C. H., 1949 Canalization of development and inheritance of acquired characters Nature. 150: 563-565.
-
(1949)
Nature
, vol.150
, pp. 563-565
-
-
Waddington, C.H.1
-
108
-
-
0003466536
-
Spline Models for Observational Data
-
Society for Industrial and Applied Mathematics, Philadelphia
-
Wahba, G., 1990 Spline Models for Observational Data. Society for Industrial and Applied Mathematics, Philadelphia.
-
(1990)
-
-
Wahba, G.1
-
109
-
-
0001762424
-
Smooth regression analysis
-
Watson, G. S., 1964 Smooth regression analysis Sankhya A.. 26: 359-372.
-
(1964)
Sankhya A.
, vol.26
, pp. 359-372
-
-
Watson, G.S.1
-
110
-
-
33847042338
-
Epistasis
-
in, London: Nature Publishing Group
-
Wilson, S. R., 2004 Epistasis, pp. 317-320 in Nature Encyclopedia of the Human Genome, Vol. 2. London: Nature Publishing Group.
-
(2004)
Nature Encyclopedia of the Human Genome
, vol.2
, pp. 317-320
-
-
Wilson, S.R.1
-
111
-
-
79957976419
-
An optimization approach to gene stacking
-
Xu, P., L. Wang, and W. D. Beavis, 2011 An optimization approach to gene stacking Eur. J. Oper. Res.. 214: 168-178.
-
(2011)
Eur. J. Oper. Res.
, vol.214
, pp. 168-178
-
-
Xu, P.1
Wang, L.2
Beavis, W.D.3
-
112
-
-
34047123280
-
R/qtlbim: QTL with Bayesian Interval Mapping in experimental crosses
-
Yandell, B. S., T. Mehta, S. Banerjee, D. Shriner, R. Venkataraman et al., 2007 R/qtlbim: QTL with Bayesian Interval Mapping in experimental crosses Bioinformatics. 23: 641-643.
-
(2007)
Bioinformatics
, vol.23
, pp. 641-643
-
-
Yandell, B.S.1
Mehta, T.2
Banerjee, S.3
Shriner, D.4
Venkataraman, R.5
-
113
-
-
84902578199
-
qtlbim: QTL Bayesian Interval Mappin
-
R package version 2.0.5.
-
Yandell, B. S., and Y. Nengjun, with contributions from T. Mehta, S. Banerjee, D. Shriner, et al., 2012 qtlbim: QTL Bayesian Interval Mappin R package version 2.0.5. http://CRAN.R-project.org/package=qtlbim
-
(2012)
-
-
Yandell, B.S.1
Nengjun, Y.2
Mehta, T.3
Banerjee, S.4
Shriner, D.5
-
114
-
-
39549086997
-
Advances in Bayesian multiple quantitative trait loci mapping in experimental crosses
-
Yi, N., and D. Shriner, 2008 Advances in Bayesian multiple quantitative trait loci mapping in experimental crosses. Heredity. 100: 240-252.
-
(2008)
Heredity
, vol.100
, pp. 240-252
-
-
Yi, N.1
Shriner, D.2
-
115
-
-
34547095545
-
An efficient Bayesian model selection approach for interacting quantitative trait loci models with many effects
-
Yi, N., D. Shriner, S. Banerjee, T. Mehta, D. Pomp et al., 2007 An efficient Bayesian model selection approach for interacting quantitative trait loci models with many effects Genetics. 176: 1865-1877.
-
(2007)
Genetics
, vol.176
, pp. 1865-1877
-
-
Yi, N.1
Shriner, D.2
Banerjee, S.3
Mehta, T.4
Pomp, D.5
-
116
-
-
33645064023
-
Mouse phenome research: implications of genetic background
-
Yoshiki, A., and K. Moriwaki, 2006 Mouse phenome research: implications of genetic background ILAR J.. 47: 94-102.
-
(2006)
ILAR J.
, vol.47
, pp. 94-102
-
-
Yoshiki, A.1
Moriwaki, K.2
-
117
-
-
0029661743
-
QTL mapping and quantitative disease resistance in plants
-
Young, N. D., 1996 QTL mapping and quantitative disease resistance in plants Annu. Rev. Phytopathol.. 34: 479-501.
-
(1996)
Annu. Rev. Phytopathol.
, vol.34
, pp. 479-501
-
-
Young, N.D.1
|