메뉴 건너뛰기




Volumn 183, Issue 1, 2009, Pages 347-363

Additive genetic variability and the Bayesian alphabet

Author keywords

[No Author keywords available]

Indexed keywords

MOLECULAR MARKER;

EID: 70350136780     PISSN: 00166731     EISSN: 00166731     Source Type: Journal    
DOI: 10.1534/genetics.109.103952     Document Type: Article
Times cited : (351)

References (37)
  • 1
    • 62549128718 scopus 로고    scopus 로고
    • Statistical mechanics and the evolution of polygenic quantitative traits
    • BARTON, N. H., and H. P. DE VLADAR, 2009 Statistical mechanics and the evolution of polygenic quantitative traits. Genetics 181: 997-1011.
    • (2009) Genetics , vol.181 , pp. 997-1011
    • Barton, N.H.1    De Vladar, H.P.2
  • 3
    • 69149088569 scopus 로고    scopus 로고
    • Reproducing kernel Hilbert spaces regression: A general framework for genetic evaluation
    • DE LOS CAMPOS, G., D. GIANOLA and G. J. M. ROSA, 2009a Reproducing kernel Hilbert spaces regression: a general framework for genetic evaluation. J. Anim. Sci. 87: 1883-1887.
    • (2009) J. Anim. Sci. , vol.87 , pp. 1883-1887
    • De Los Campos, G.1    Gianola, D.2    Rosa, G.J.M.3
  • 4
    • 67849130524 scopus 로고    scopus 로고
    • Predicting quantitative traits with regression models for dense molecular markers and pedigrees
    • DE LOS CAMPOS, G., H. NAYA, D. GIANOLA, J. CROSSA, A. LEGARRA et al., 2009b Predicting quantitative traits with regression models for dense molecular markers and pedigrees. Genetics 182: 375-385.
    • (2009) Genetics , vol.182 , pp. 375-385
    • De Los Campos, G.1    Naya, H.2    Gianola, D.3    Crossa, J.4    Legarra, A.5
  • 6
    • 0001244316 scopus 로고
    • Marker-assisted selection using best linear unbiased prediction
    • FERNANDO, R. L., and M. GROSSMAN, 1989 Marker-assisted selection using best linear unbiased prediction. Genet. Sel. Evol. 33: 209-229.
    • (1989) Genet. Sel. Evol. , vol.33 , pp. 209-229
    • Fernando, R.L.1    Grossman, M.2
  • 7
    • 63449113494 scopus 로고    scopus 로고
    • Inferring genetic values for quantitative traits non-parametrically
    • GIANOLA, D., and G. DE LOS CAMPOS, 2008 Inferring genetic values for quantitative traits non-parametrically. Genet. Res. 90: 525-540.
    • (2008) Genet. Res. , vol.90 , pp. 525-540
    • Gianola, D.1    De Los Campos, G.2
  • 8
    • 0000849009 scopus 로고
    • Bayesian methods in animal breeding
    • GIANOLA, D., and R. L. FERNANDO, 1986 Bayesian methods in animal breeding. J. Anim. Sci. 63: 217-244.
    • (1986) J. Anim. Sci. , vol.63 , pp. 217-244
    • Gianola, D.1    Fernando, R.L.2
  • 9
    • 0037274690 scopus 로고    scopus 로고
    • On marker-assisted prediction of genetic value: Beyond the ridge
    • GIANOLA, D., M. PÉREZ-ENCISO and M. A. TORO, 2003 On marker-assisted prediction of genetic value: beyond the ridge. Genetics 163: 347-365.
    • (2003) Genetics , vol.163 , pp. 347-365
    • Gianola, D.1    Pérez-Enciso, M.2    Toro, M.A.3
  • 10
    • 33746424900 scopus 로고    scopus 로고
    • Genomic assisted prediction of genetic value with semi-parametric procedures
    • GIANOLA, D., R. L. FERNANDO and A. STELLA, 2006a Genomic assisted prediction of genetic value with semi-parametric procedures. Genetics 173: 1761-1776.
    • (2006) Genetics , vol.173 , pp. 1761-1776
    • Gianola, D.1    Fernando, R.L.2    Stella, A.3
  • 11
    • 33747870143 scopus 로고    scopus 로고
    • On the quantitative genetics of mixture characters
    • GIANOLA, D., B. HERINGSTAD and J. ØDEGÅRD, 2006b On the quantitative genetics of mixture characters. Genetics 173: 2247-2255.
    • (2006) Genetics , vol.173 , pp. 2247-2255
    • Gianola, D.1    Heringstad, B.2    Ødegård, J.3
  • 12
    • 45849117254 scopus 로고    scopus 로고
    • Reproducing kernel Hilbert spaces methods for genomic assisted prediction of quantitative traits
    • GIANOLA, D., and J. B. C. H. M. VAN KAAM, 2008 Reproducing kernel Hilbert spaces methods for genomic assisted prediction of quantitative traits. Genetics 178: 2289-2303.
    • (2008) Genetics , vol.178 , pp. 2289-2303
    • Gianola, D.1    Van Kaam, J.B.C.H.M.2
  • 13
    • 45849103551 scopus 로고    scopus 로고
    • Nonparametric methods for incorporating genomic information into genetic evaluations: An application to mortality in broilers
    • GONZÁLEZ-RECIO, O., D. GIANOLA, N. LONG, K. A. WEIGEL, G. J. M. ROSA et al., 2008 Nonparametric methods for incorporating genomic information into genetic evaluations: an application to mortality in broilers. Genetics 178: 2305-2313.
    • (2008) Genetics , vol.178 , pp. 2305-2313
    • González-Recio, O.1    Gianola, D.2    Long, N.3    Weigel, K.A.4    Rosa, G.J.M.5
  • 14
    • 66249089985 scopus 로고    scopus 로고
    • Genome-assisted prediction of a quantitative trait in parents and progeny: Application to food conversion rate in chickens
    • GONZÁLEZ-RECIO, O., D. GIANOLA, G. J. M. ROSA, K. A. WEIGEL and A. KRANIS, 2009 Genome-assisted prediction of a quantitative trait in parents and progeny: application to food conversion rate in chickens. Genet. Sel. Evol. 41: 3-13.
    • (2009) Genet. Sel. Evol. , vol.41 , pp. 3-13
    • González-Recio, O.1    Gianola, D.2    Rosa, G.J.M.3    Weigel, K.A.4    Kranis, A.5
  • 15
    • 37249083895 scopus 로고    scopus 로고
    • The impact of genetic relationship information on genome-assisted breeding values
    • HABIER, D., R. L. FERNANDO and J. C. M. DEKKERS, 2007 The impact of genetic relationship information on genome-assisted breeding values. Genetics 177: 2389-2397.
    • (2007) Genetics , vol.177 , pp. 2389-2397
    • Habier, D.1    Fernando, R.L.2    Dekkers, J.C.M.3
  • 16
    • 59349098163 scopus 로고    scopus 로고
    • Invited review: Genomic selection in dairy cattle: progress and challenges
    • HAYES, B. J., P. J. BOWMAN, A. J. CHAMBERLAIN and M. E. GODDARD, 2009 Invited review: genomic selection in dairy cattle: progress and challenges. J. Dairy Sci. 92: 433-443.
    • (2009) J. Dairy Sci. , vol.92 , pp. 433-443
    • Hayes, B.J.1    Bowman, P.J.2    Chamberlain, A.J.3    Goddard, M.E.4
  • 17
  • 19
    • 0025217786 scopus 로고
    • Efficiency of marker-assisted selection in the improvement of quantitative traits
    • LANDE, R., and R. THOMPSON, 1990 Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124: 743-756. (Pubitemid 20106345)
    • (1990) Genetics , vol.124 , Issue.3 , pp. 743-756
    • Lande, R.1    Thompson, R.2
  • 20
    • 36849010721 scopus 로고    scopus 로고
    • Machine learning classification procedure for selecting SNPs in genomic selection: Application to early mortality in broilers
    • LONG, N., D. GIANOLA, G. J. M. ROSA, K. A. WEIGEL and S. AVENDAÑO, 2007 Machine learning classification procedure for selecting SNPs in genomic selection: application to early mortality in broilers. J. Anim. Breed. Genet. 124: 377-389.
    • (2007) J. Anim. Breed. Genet. , vol.124 , pp. 377-389
    • Long, N.1    Gianola, D.2    Rosa, G.J.M.3    Weigel, K.A.4    Avendaño, S.5
  • 21
    • 55549147191 scopus 로고    scopus 로고
    • The case of the missing heritability
    • MAHER, B., 2008 The case of the missing heritability. Nature 456: 18-21.
    • (2008) Nature , vol.456 , pp. 18-21
    • Maher, B.1
  • 22
    • 0035045051 scopus 로고    scopus 로고
    • Prediction of total genetic value using genome-wide dense marker maps
    • MEUWISSEN, T. H., B. J. HAYES and M. E. GODDARD, 2001 Prediction of total genetic value using genome-wide dense marker maps. Genetics 157: 1819-1829.
    • (2001) Genetics , vol.157 , pp. 1819-1829
    • Meuwissen, T.H.1    Hayes, B.J.2    Goddard, M.E.3
  • 24
    • 0042570344 scopus 로고    scopus 로고
    • Robust linear mixed models with normal/independent distributions and Bayesian MCMC implementation
    • ROSA, G. J. M., C. R. PADOVANI and D. GIANOLA, 2003 Robust linear mixed models with normal/independent distributions and Bayesian MCMC implementation. Biom. J. 45: 573-590.
    • (2003) Biom. J. , vol.45 , pp. 573-590
    • Rosa, G.J.M.1    Padovani, C.R.2    Gianola, D.3
  • 25
    • 4444229300 scopus 로고    scopus 로고
    • Bayesian longitudinal data analysis with mixed models and thick-tailed distributions using MCMC
    • ROSA, G. J. M., D. GIANOLA and C. R. PADOVANI, 2004 Bayesian longitudinal data analysis with mixed models and thick-tailed distributions using MCMC. J. Appl. Stat. 31: 855-873.
    • (2004) J. Appl. Stat. , vol.31 , pp. 855-873
    • Rosa, G.J.M.1    Gianola, D.2    Padovani, C.R.3
  • 27
    • 0032415138 scopus 로고    scopus 로고
    • Attenuating effects of preferential treatment with Student-t mixed linear models: A simulation study
    • STRANDÉN, I., and D. GIANOLA, 1998 Attenuating effects of preferential treatment with Student-t mixed linear models: a simulation study. Genet. Sel. Evol. 30: 565-583.
    • (1998) Genet. Sel. Evol. , vol.30 , pp. 565-583
    • Strandén, I.1    Gianola, D.2
  • 28
    • 0022233074 scopus 로고
    • Effects of pleiotropy on predictions concerning mutation selection balance for polygenic traits
    • TURELLI, M., 1985 Effects of pleiotropy on predictions concerning mutation selection balance for polygenic traits. Genetics 111: 165-195.
    • (1985) Genetics , vol.111 , pp. 165-195
    • Turelli, M.1
  • 29
    • 55849133422 scopus 로고    scopus 로고
    • Efficient methods to compute genomic predictions
    • VAN RADEN, P. M., 2008 Efficient methods to compute genomic predictions. J. Dairy Sci. 91: 4414-4423.
    • (2008) J. Dairy Sci. , vol.91 , pp. 4414-4423
    • Van Raden, P.M.1
  • 31
    • 0003124559 scopus 로고
    • Marginal inferences about variance components in a mixed linear model using Gibbs sampling
    • WANG, C. S., J. J. RUTLEDGE and D. GIANOLA, 1993 Marginal inferences about variance components in a mixed linear model using Gibbs sampling. Genet. Sel. Evol. 25: 41-62.
    • (1993) Genet. Sel. Evol. , vol.25 , pp. 41-62
    • Wang, C.S.1    Rutledge, J.J.2    Gianola, D.3
  • 32
    • 0028117976 scopus 로고
    • Bayesian analysis of mixed linear models via Gibbs sampling with an application to litter size in Iberian pigs
    • WANG, C. S., J. J. RUTLEDGE and D. GIANOLA, 1994 Bayesian analysis of mixed linear models via Gibbs sampling with an application to litter size in Iberian pigs. Genet. Sel. Evol. 26: 91-115.
    • (1994) Genet. Sel. Evol. , vol.26 , pp. 91-115
    • Wang, C.S.1    Rutledge, J.J.2    Gianola, D.3
  • 33
    • 0034113697 scopus 로고    scopus 로고
    • Marker-assisted selection using ridge regression
    • WHITTAKER, J. C., R. THOMPSON and M. C. DENHAM, 2000 Marker-assisted selection using ridge regression. Genet. Res. 75: 249-252.
    • (2000) Genet. Res. , vol.75 , pp. 249-252
    • Whittaker, J.C.1    Thompson, R.2    Denham, M.C.3
  • 34
    • 0001111820 scopus 로고
    • The distribution of gene frequencies in populations
    • WRIGHT, S., 1937 The distribution of gene frequencies in populations. Proc. Natl. Acad. Sci. USA 23: 307-320.
    • (1937) Proc. Natl. Acad. Sci. USA , vol.23 , pp. 307-320
    • Wright, S.1
  • 35
    • 49849103360 scopus 로고    scopus 로고
    • Bayesian Lasso for quantitative trait loci mapping
    • YI, N., and S. XU, 2008 Bayesian Lasso for quantitative trait loci mapping. Genetics 179: 1045-1055.
    • (2008) Genetics , vol.179 , pp. 1045-1055
    • Yi, N.1    Xu, S.2
  • 36
    • 0037297614 scopus 로고    scopus 로고
    • Estimating polygenic effects using markers of the entire genome
    • XU, S., 2003 Estimating polygenic effects using markers of the entire genome. Genetics 163: 789-801.
    • (2003) Genetics , vol.163 , pp. 789-801
    • Xu, S.1
  • 37
    • 13744259075 scopus 로고    scopus 로고
    • Predictions of patterns of response to artificial selection in lines derived from natural populations
    • ZHANG, X. S., and W. G. HILL, 2005 Predictions of patterns of response to artificial selection in lines derived from natural populations. Genetics 169: 411-425.
    • (2005) Genetics , vol.169 , pp. 411-425
    • Zhang, X.S.1    Hill, W.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.