메뉴 건너뛰기




Volumn 25, Issue , 2012, Pages 122-129

Comparing error minimized extreme learning machines and support vector sequential feed-forward neural networks

Author keywords

Error minimized extreme learning machines; Sequential approximations; Support vector sequential feed forward neural networks

Indexed keywords

BENCH-MARK PROBLEMS; BENCHMARK CLASSIFICATION; COMPUTATIONAL COSTS; DATA SETS; EXPERIMENTAL STUDIES; EXTREME LEARNING MACHINE; FEED-FORWARD NETWORK; GENERALIZATION PERFORMANCE; OPTIMAL COEFFICIENT; RANDOM HIDDEN NODES; SEQUENTIAL APPROXIMATION; SUM OF SQUARES; SUPPORT VECTOR; TRAINING SETS;

EID: 82355175771     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2011.08.005     Document Type: Article
Times cited : (19)

References (22)
  • 1
    • 36948999941 scopus 로고    scopus 로고
    • UCI machine learning repository
    • University of California, Irvine, School of Information and Computer Science.
    • Asuncion, A., & Newman, D. J. (2007). UCI machine learning repository. University of California, Irvine, School of Information and Computer Science. http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • (2007)
    • Asuncion, A.1    Newman, D.J.2
  • 3
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Chen S., Cowan C.F.N., Grant P.M. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Transactions on Neural Networks 1991, 2:302-309.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 4
    • 68949200808 scopus 로고    scopus 로고
    • Error minimized extreme learning machine with growth of hidden nodes and incremental learning
    • Feng G., Huang G.B., Lin Q., Gay R. Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Transactions on Neural Networks 2009, 20:1352-1357.
    • (2009) IEEE Transactions on Neural Networks , vol.20 , pp. 1352-1357
    • Feng, G.1    Huang, G.B.2    Lin, Q.3    Gay, R.4
  • 5
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang G.B., Chen L., Siew C.K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks 2006, 17:879-892.
    • (2006) IEEE Transactions on Neural Networks , vol.17 , pp. 879-892
    • Huang, G.B.1    Chen, L.2    Siew, C.K.3
  • 6
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.B., Zhu Q.Y., Siew C.K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 8
    • 0031146959 scopus 로고    scopus 로고
    • Constructive algorithms for structure learning in feedforward neural networks for regression problems
    • Kwok T.Y., Yeung D.Y. Constructive algorithms for structure learning in feedforward neural networks for regression problems. IEEE Transactions on Neural Networks 1997, 8:630-645.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , pp. 630-645
    • Kwok, T.Y.1    Yeung, D.Y.2
  • 10
  • 12
    • 0001071040 scopus 로고
    • A resource-allocating network for function interpolation
    • Platt J. A resource-allocating network for function interpolation. Neural Computation 1991, 3:213-225.
    • (1991) Neural Computation , vol.3 , pp. 213-225
    • Platt, J.1
  • 13
    • 0030111078 scopus 로고    scopus 로고
    • Experience with selecting exemplars from clean data
    • Plutowski M., Cottrell G., White H. Experience with selecting exemplars from clean data. Neural Networks 1996, 9:273-294.
    • (1996) Neural Networks , vol.9 , pp. 273-294
    • Plutowski, M.1    Cottrell, G.2    White, H.3
  • 14
    • 0036085860 scopus 로고    scopus 로고
    • A new incremental method for function approximation using feed-forward neural networks
    • Romero E., Alquézar R. A new incremental method for function approximation using feed-forward neural networks. International joint conference on neural networks 2002, Vol. 2:1968-1973.
    • (2002) International joint conference on neural networks , vol.2 , pp. 1968-1973
    • Romero, E.1    Alquézar, R.2
  • 15
    • 33745193947 scopus 로고    scopus 로고
    • A sequential algorithm for feed-forward neural networks with optimal coefficients and interacting frequencies
    • Romero E., Alquézar R. A sequential algorithm for feed-forward neural networks with optimal coefficients and interacting frequencies. Neurocomputing 2006, 69:1540-1552.
    • (2006) Neurocomputing , vol.69 , pp. 1540-1552
    • Romero, E.1    Alquézar, R.2
  • 16
    • 34248640313 scopus 로고    scopus 로고
    • Comparing support vector machines and feed-forward neural networks with similar hidden-layer weights
    • Romero E., Toppo D. Comparing support vector machines and feed-forward neural networks with similar hidden-layer weights. IEEE Transactions on Neural Networks 2007, 18:959-963.
    • (2007) IEEE Transactions on Neural Networks , vol.18 , pp. 959-963
    • Romero, E.1    Toppo, D.2
  • 20
    • 0036643065 scopus 로고    scopus 로고
    • Kernel matching pursuit
    • (special issue), New methods for model combination and model selection
    • Vincent P., Bengio Y. Kernel matching pursuit. Machine Learning 2002, 48:165-187. (special issue).
    • (2002) Machine Learning , vol.48 , pp. 165-187
    • Vincent, P.1    Bengio, Y.2
  • 21
    • 0031568361 scopus 로고    scopus 로고
    • A sequential learning scheme for function approximation using minimal radial basis function neural networks
    • Yingwei L., Sundararajan N., Saratchandran P. A sequential learning scheme for function approximation using minimal radial basis function neural networks. Neural Computation 1997, 9:461-478.
    • (1997) Neural Computation , vol.9 , pp. 461-478
    • Yingwei, L.1    Sundararajan, N.2    Saratchandran, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.