메뉴 건너뛰기




Volumn 12, Issue , 2011, Pages

Predicting complex quantitative traits with Bayesian neural networks: A case study with Jersey cows and wheat

Author keywords

[No Author keywords available]

Indexed keywords

MOLECULAR MARKER;

EID: 80053594474     PISSN: None     EISSN: 14712156     Source Type: Journal    
DOI: 10.1186/1471-2156-12-87     Document Type: Article
Times cited : (197)

References (44)
  • 1
    • 0035045051 scopus 로고    scopus 로고
    • Prediction of total genetic value using genome-wide dense marker maps
    • 1461589, 11290733
    • Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157:1819-1829. 1461589, 11290733.
    • (2001) Genetics , vol.157 , pp. 1819-1829
    • Meuwissen, T.H.E.1    Hayes, B.J.2    Goddard, M.E.3
  • 2
    • 69149088569 scopus 로고    scopus 로고
    • Reproducing kernel Hilbert spaces regression: A general framework for genetic evaluation
    • 10.2527/jas.2008-1259, 19213705
    • de los Campos G, Gianola D, Rosa GJM. Reproducing kernel Hilbert spaces regression: A general framework for genetic evaluation. Journal of Animal Science 2009, 87:1883-1887. 10.2527/jas.2008-1259, 19213705.
    • (2009) Journal of Animal Science , vol.87 , pp. 1883-1887
    • de los Campos, G.1    Gianola, D.2    Rosa, G.J.M.3
  • 3
    • 78649317608 scopus 로고    scopus 로고
    • Predicting genetic predisposition in humans: the promise of whole genome markers
    • 10.1038/nrg2898, 21045869
    • de los Campos G, Gianola D, Allison DB. Predicting genetic predisposition in humans: the promise of whole genome markers. Nature Reviews Genetics 2010, 11:880-886. 10.1038/nrg2898, 21045869.
    • (2010) Nature Reviews Genetics , vol.11 , pp. 880-886
    • de los Campos, G.1    Gianola, D.2    Allison, D.B.3
  • 4
    • 78951477718 scopus 로고    scopus 로고
    • Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods
    • 10.1017/S0016672310000285, 20943010
    • de los Campos G, Gianola D, Rosa GJM, Weigel KA, Crossa J. Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods. Genetics Research 2010, 92:295-308. 10.1017/S0016672310000285, 20943010.
    • (2010) Genetics Research , vol.92 , pp. 295-308
    • de los Campos, G.1    Gianola, D.2    Rosa, G.J.M.3    Weigel, K.A.4    Crossa, J.5
  • 5
    • 33746424900 scopus 로고    scopus 로고
    • Genomic assisted prediction of genetic value with semi-parametric procedures
    • 10.1534/genetics.105.049510, 1526664, 16648593
    • Gianola D, Fernando RL, Stella A. Genomic assisted prediction of genetic value with semi-parametric procedures. Genetics 2006, 173:1761-1776. 10.1534/genetics.105.049510, 1526664, 16648593.
    • (2006) Genetics , vol.173 , pp. 1761-1776
    • Gianola, D.1    Fernando, R.L.2    Stella, A.3
  • 6
    • 45849117254 scopus 로고    scopus 로고
    • Reproducing kernel hilbert spaces regression methods for genomic assisted prediction of quantitative traits
    • 10.1534/genetics.107.084285, 2323816, 18430950
    • Gianola D, van Kaam JBCHM. Reproducing kernel hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics 2008, 178:2289-2303. 10.1534/genetics.107.084285, 2323816, 18430950.
    • (2008) Genetics , vol.178 , pp. 2289-2303
    • Gianola, D.1    van Kaam, J.B.C.H.M.2
  • 7
    • 63449113494 scopus 로고    scopus 로고
    • Inferring genetic values for quantitative traits non-parametrically
    • 10.1017/S0016672308009890, 19123970
    • Gianola D, de los Campos G. Inferring genetic values for quantitative traits non-parametrically. Genetics Research 2008, 90:525-540. 10.1017/S0016672308009890, 19123970.
    • (2008) Genetics Research , vol.90 , pp. 525-540
    • Gianola, D.1    de los Campos, G.2
  • 8
    • 77958480125 scopus 로고    scopus 로고
    • Radial basis function regression methods for predicting quantitative traits using SNP markers
    • 10.1017/S0016672310000157, 20667165
    • Long N, Gianola D, Rosa GMJ, Weigel KA, Kranis A, González-Recio O. Radial basis function regression methods for predicting quantitative traits using SNP markers. Genetics Research 2010, 92(3):209-25. 10.1017/S0016672310000157, 20667165.
    • (2010) Genetics Research , vol.92 , Issue.3 , pp. 209-225
    • Long, N.1    Gianola, D.2    Rosa, G.M.J.3    Weigel, K.A.4    Kranis, A.5    González-Recio, O.6
  • 9
    • 79960171497 scopus 로고    scopus 로고
    • Predicting genetic values: a kernel-based best linear unbiased prediction with genomic data
    • 10.1534/genetics.111.128694, 21515573
    • Ober U, Erbe M, Long N, Porcu E, Schlather M, Simianer H. Predicting genetic values: a kernel-based best linear unbiased prediction with genomic data. Genetics 2011, 188(3):695-708. 10.1534/genetics.111.128694, 21515573.
    • (2011) Genetics , vol.188 , Issue.3 , pp. 695-708
    • Ober, U.1    Erbe, M.2    Long, N.3    Porcu, E.4    Schlather, M.5    Simianer, H.6
  • 10
    • 9144250273 scopus 로고    scopus 로고
    • Estimating UV Erythema1 irradiance by means of neural networks
    • 10.1562/2004-03-12-RA-111.1, 15362949
    • Alados I, Mellado JA, Ramos F, Alados-Arboledas L. Estimating UV Erythema1 irradiance by means of neural networks. Photochemistry and Photobiology 2004, 80:351-358. 10.1562/2004-03-12-RA-111.1, 15362949.
    • (2004) Photochemistry and Photobiology , vol.80 , pp. 351-358
    • Alados, I.1    Mellado, J.A.2    Ramos, F.3    Alados-Arboledas, L.4
  • 11
    • 33846516584 scopus 로고    scopus 로고
    • Pattern Recognition and Machine Learning
    • Singapore: Springer
    • Bishop CM. Pattern Recognition and Machine Learning. 2006, Singapore: Springer.
    • (2006)
    • Bishop, C.M.1
  • 12
    • 80055086693 scopus 로고    scopus 로고
    • Advances in Artificial Intelligence
    • Berlin: Springer
    • Lamontagne L, Marchand M. Advances in Artificial Intelligence. 2006, Berlin: Springer.
    • (2006)
    • Lamontagne, L.1    Marchand, M.2
  • 13
    • 80055069429 scopus 로고    scopus 로고
    • Data Mining using Neural Networks: A Guide for Statisticians
    • Pereira BDB, Rao CR. Data Mining using Neural Networks: A Guide for Statisticians. 2009, http://www.po.ufrj.br/basilio/publicacoes/livros/2009_datamining_using_neural_networks.pdf
    • (2009)
    • Pereira, B.D.B.1    Rao, C.R.2
  • 14
    • 0035312886 scopus 로고    scopus 로고
    • Bayesian approach for neural networks review and case studies
    • 10.1016/S0893-6080(00)00098-8, 11341565
    • Lampinen J, Vehtari A. Bayesian approach for neural networks review and case studies. Neural Networks 2001, 14:257-274. 10.1016/S0893-6080(00)00098-8, 11341565.
    • (2001) Neural Networks , vol.14 , pp. 257-274
    • Lampinen, J.1    Vehtari, A.2
  • 15
    • 0003639537 scopus 로고    scopus 로고
    • Likelihood, Bayesian and MCMC methods in quantitative genetics
    • New York: Springer
    • Sorensen D, Gianola D. Likelihood, Bayesian and MCMC methods in quantitative genetics. 2002, New York: Springer.
    • (2002)
    • Sorensen, D.1    Gianola, D.2
  • 16
    • 70350136780 scopus 로고    scopus 로고
    • Additive genetic variability and the Bayesian alphabet
    • 10.1534/genetics.109.103952, 2746159, 19620397
    • Gianola D, de los Campos G, Hill WG, Manfredi E, Fernando R. Additive genetic variability and the Bayesian alphabet. Genetics 2009, 183:347-363. 10.1534/genetics.109.103952, 2746159, 19620397.
    • (2009) Genetics , vol.183 , pp. 347-363
    • Gianola, D.1    de los Campos, G.2    Hill, W.G.3    Manfredi, E.4    Fernando, R.5
  • 17
    • 55849133422 scopus 로고    scopus 로고
    • Efficient methods to compute genomic predictions
    • 10.3168/jds.2007-0980, 18946147
    • Van Raden PM. Efficient methods to compute genomic predictions. J Dairy Sci 2008, 91:4414-4423. 10.3168/jds.2007-0980, 18946147.
    • (2008) J Dairy Sci , vol.91 , pp. 4414-4423
    • Van Raden, P.M.1
  • 18
  • 19
    • 4043069967 scopus 로고    scopus 로고
    • Bayesian methods for neural networks and related models
    • Titterington DM. Bayesian methods for neural networks and related models. Statistical Science 2004, 19:128-139.
    • (2004) Statistical Science , vol.19 , pp. 128-139
    • Titterington, D.M.1
  • 21
    • 77955128732 scopus 로고    scopus 로고
    • Inferences from mixed models in quantitative genetics
    • West Sussex UK: John Wiley & Sons, Balding DJ, Bishop M, Cannings C, Third
    • Gianola D. Inferences from mixed models in quantitative genetics. Handbook of Statistical Genetics 2007, West Sussex UK: John Wiley & Sons, Balding DJ, Bishop M, Cannings C, Third.
    • (2007) Handbook of Statistical Genetics
    • Gianola, D.1
  • 22
    • 0001633434 scopus 로고
    • Marginal maximum likelihood estimation of variance components in Poisson mixed models using Laplace integration
    • Tempelman RJ, Gianola D. Marginal maximum likelihood estimation of variance components in Poisson mixed models using Laplace integration. Genetics, Selection, Evolution 1993, 25:305-319.
    • (1993) Genetics, Selection, Evolution , vol.25 , pp. 305-319
    • Tempelman, R.J.1    Gianola, D.2
  • 23
    • 33646447689 scopus 로고    scopus 로고
    • Application of Bayesian regularized BP neural network model for trend analysis, acidity and chemical composition of precipitation in North
    • Xu M, Zengi G, Xu X, Huang G, Jiang R, Sun W. Application of Bayesian regularized BP neural network model for trend analysis, acidity and chemical composition of precipitation in North. Water, Air, and Soil Pollution 2006, 172:167-184.
    • (2006) Water, Air, and Soil Pollution , vol.172 , pp. 167-184
    • Xu, M.1    Zengi, G.2    Xu, X.3    Huang, G.4    Jiang, R.5    Sun, W.6
  • 24
    • 39449112244 scopus 로고
    • Estimating variance components in a class of mixed models by restricted maximum likelihood
    • Smith SP, Graser HU. Estimating variance components in a class of mixed models by restricted maximum likelihood. J Dairy Sci 1986, 69:1165.
    • (1986) J Dairy Sci , vol.69 , pp. 1165
    • Smith, S.P.1    Graser, H.U.2
  • 25
    • 0000508072 scopus 로고
    • A derivative-free approach for estimating variance components in animal models by restricted maximum likelihood
    • Graser HU, Smith SP, Tier B. A derivative-free approach for estimating variance components in animal models by restricted maximum likelihood. J Anim Sci 1987, 64:1362.
    • (1987) J Anim Sci , vol.64 , pp. 1362
    • Graser, H.U.1    Smith, S.P.2    Tier, B.3
  • 26
    • 22944433613 scopus 로고    scopus 로고
    • Selection of an artificial neural network model for the post-calibration of weather radar rainfall estimation
    • Hassami M, Anctil F, Viau AA. Selection of an artificial neural network model for the post-calibration of weather radar rainfall estimation. Journal of Data Science 2004, 220:107-124.
    • (2004) Journal of Data Science , vol.220 , pp. 107-124
    • Hassami, M.1    Anctil, F.2    Viau, A.A.3
  • 27
    • 0004272772 scopus 로고    scopus 로고
    • Information Theory, Inference and Learning Algorithms
    • Cambridge; Cambridge University Press
    • MacKay JCD. Information Theory, Inference and Learning Algorithms. 2008, Cambridge; Cambridge University Press.
    • (2008)
    • MacKay, J.C.D.1
  • 28
    • 79959599369 scopus 로고    scopus 로고
    • Prediction of body mass index in mice using dense molecular markers and a regularized neural network
    • Okut H, Gianola D, Rosa GJM, Weigel KA. Prediction of body mass index in mice using dense molecular markers and a regularized neural network. Genetics Research 2011, 93:189-201.
    • (2011) Genetics Research , vol.93 , pp. 189-201
    • Okut, H.1    Gianola, D.2    Rosa, G.J.M.3    Weigel, K.A.4
  • 29
    • 0343271970 scopus 로고    scopus 로고
    • Neural Network Toolbox' 6 User's Guide
    • The MathWorks, Inc
    • Beal MH, Hagan MT, Demuth HB. Neural Network Toolbox' 6 User's Guide. 2010, The MathWorks, Inc.
    • (2010)
    • Beal, M.H.1    Hagan, M.T.2    Demuth, H.B.3
  • 30
    • 80855131458 scopus 로고    scopus 로고
    • Application of support vector regressions to genome-assisted prediction of quantitative traits
    • (under review)
    • Long N, Gianola D, Rosa GJM, Weigel KA. Application of support vector regressions to genome-assisted prediction of quantitative traits. Theoretical and Applied Genetics 2011, (under review).
    • (2011) Theoretical and Applied Genetics
    • Long, N.1    Gianola, D.2    Rosa, G.J.M.3    Weigel, K.A.4
  • 31
    • 0003413187 scopus 로고    scopus 로고
    • Neural Networks: Comprehensive Foundation
    • New York USA: Prentice-Hall
    • Haykin S. Neural Networks: Comprehensive Foundation. 2008, New York USA: Prentice-Hall.
    • (2008)
    • Haykin, S.1
  • 32
    • 37249083895 scopus 로고    scopus 로고
    • The impact of genetic relationship information on genome-assisted breeding values
    • 2219482, 18073436
    • Habier D, Fernando RL, Dekkers JCM. The impact of genetic relationship information on genome-assisted breeding values. Genetics 2007, 177(4):2389-2397. 2219482, 18073436.
    • (2007) Genetics , vol.177 , Issue.4 , pp. 2389-2397
    • Habier, D.1    Fernando, R.L.2    Dekkers, J.C.M.3
  • 33
    • 77949295825 scopus 로고    scopus 로고
    • Can you believe those genomic evaluations for young bulls?
    • Van Raden PM, Tooker ME, Cole JB. Can you believe those genomic evaluations for young bulls?. Journal of Dairy Science 2009, 92(E-Suppl 1):314.
    • (2009) Journal of Dairy Science , vol.92 , Issue.SUPPL. 1 , pp. 314
    • Van Raden, P.M.1    Tooker, M.E.2    Cole, J.B.3
  • 34
    • 0003995062 scopus 로고    scopus 로고
    • Introduction to Quantitative Genetics
    • Malaysia: Longmans Green
    • Falconer DS, McKay TFC. Introduction to Quantitative Genetics. 1996, Malaysia: Longmans Green.
    • (1996)
    • Falconer, D.S.1    McKay, T.F.C.2
  • 36
    • 85168500140 scopus 로고    scopus 로고
    • Genomic-enabled prediction based on molecular markers and pedigree using the Bayesian Linear Regression package in R
    • 10.3835/plantgenome2010.04.0005, 3091623, 21566722
    • Perez P, de los Campos G, Crossa J, Gianola D. Genomic-enabled prediction based on molecular markers and pedigree using the Bayesian Linear Regression package in R. The Plant Genome 2010, 3:106-116. 10.3835/plantgenome2010.04.0005, 3091623, 21566722.
    • (2010) The Plant Genome , vol.3 , pp. 106-116
    • Perez, P.1    de los Campos, G.2    Crossa, J.3    Gianola, D.4
  • 37
    • 59349098163 scopus 로고    scopus 로고
    • Invited review: Genomic selection in dairy cattle: Progress and challenges
    • 10.3168/jds.2008-1646, 19164653
    • Hayes BJ, Bowman BJ, Chamberlain AJ, Goddard ME. Invited review: Genomic selection in dairy cattle: Progress and challenges. J Dairy Sci 2009, 92:433-443. 10.3168/jds.2008-1646, 19164653.
    • (2009) J Dairy Sci , vol.92 , pp. 433-443
    • Hayes, B.J.1    Bowman, B.J.2    Chamberlain, A.J.3    Goddard, M.E.4
  • 38
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
    • 10.1016/S1364-8152(99)00007-9, 22008626
    • Maier HR, Dandy CG. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling & Software 2000, 15:101-124. 10.1016/S1364-8152(99)00007-9, 22008626.
    • (2000) Environmental Modelling & Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, C.G.2
  • 39
    • 0003396255 scopus 로고    scopus 로고
    • Neural Network Toolbox™ 6 User's Guide
    • The MathWorks, Inc
    • Demuth H, Beale M, Hagan M. Neural Network Toolbox™ 6 User's Guide. 2009, The MathWorks, Inc.
    • (2009)
    • Demuth, H.1    Beale, M.2    Hagan, M.3
  • 40
    • 33751032263 scopus 로고    scopus 로고
    • Ensembles of Bayesian-regularized genetic neural networks for modeling of acetylcholinesterase inhibition by huprines
    • 10.1111/j.1747-0285.2006.00435.x, 17105484
    • Fernandez M, Caballero J. Ensembles of Bayesian-regularized genetic neural networks for modeling of acetylcholinesterase inhibition by huprines. Chem Biol Drug Des 2006, 68:201-212. 10.1111/j.1747-0285.2006.00435.x, 17105484.
    • (2006) Chem Biol Drug Des , vol.68 , pp. 201-212
    • Fernandez, M.1    Caballero, J.2
  • 41
    • 2942538155 scopus 로고    scopus 로고
    • Modelling blood-brain barrier partitioning using Bayesian neural nets
    • 10.1016/j.jmgm.2004.03.010, 15182809
    • Winkler DA, Burden FR. Modelling blood-brain barrier partitioning using Bayesian neural nets. Journal of Molecular Graphics and Modelling 2004, 22:499-505. 10.1016/j.jmgm.2004.03.010, 15182809.
    • (2004) Journal of Molecular Graphics and Modelling , vol.22 , pp. 499-505
    • Winkler, D.A.1    Burden, F.R.2
  • 42
    • 0037438909 scopus 로고    scopus 로고
    • Neural network modelling of coastal algal blooms
    • Joseph H, Huang WL, Dickman M. Neural network modelling of coastal algal blooms. Ecol Model 2003, 159:179-201.
    • (2003) Ecol Model , vol.159 , pp. 179-201
    • Joseph, H.1    Huang, W.L.2    Dickman, M.3
  • 43
    • 0345117343 scopus 로고    scopus 로고
    • Comparison of linear and nonlinear classification algorithms for the prediction of drug and chemical metabolism by human UDP-Glucuronosyltransferase isoforms
    • 10.1021/ci034108k, 14632453
    • Sorich MJ, Miners JO, Ross AM, Winker DA, Burden FR, Smith PA. Comparison of linear and nonlinear classification algorithms for the prediction of drug and chemical metabolism by human UDP-Glucuronosyltransferase isoforms. J Chem Inf Comput Sci 2003, 43:2019-2024. 10.1021/ci034108k, 14632453.
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 2019-2024
    • Sorich, M.J.1    Miners, J.O.2    Ross, A.M.3    Winker, D.A.4    Burden, F.R.5    Smith, P.A.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.