메뉴 건너뛰기




Volumn 26, Issue 3, 2013, Pages 452-511

Projective clustering ensembles

Author keywords

Clustering; Clustering ensembles; Multi objective optimization; Projective clustering

Indexed keywords

CLUSTER ANALYSIS; MULTIOBJECTIVE OPTIMIZATION; PROBLEM SOLVING;

EID: 84902551612     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10618-012-0266-x     Document Type: Article
Times cited : (26)

References (86)
  • 15
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L (1996) Bagging predictors. Mach Learn 24(2):123-140 (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 20
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via theEMalgorithm
    • Dempster AP, LairdNM, RdinDB (1977) Maximum likelihood from incomplete data via theEMalgorithm. J R Stat Soc 39:1-38
    • (1977) J R Stat Soc , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rdin, D.B.3
  • 24
    • 0038391443 scopus 로고    scopus 로고
    • Bagging to improve the accuracy of a clustering procedure
    • DOI 10.1093/bioinformatics/btg038
    • Dudoit S, Fridlyand J (2003) Bagging to improve the accuracy of a clustering procedure. Bioinformatics 19(9):1090-1099 (Pubitemid 36790010)
    • (2003) Bioinformatics , vol.19 , Issue.9 , pp. 1090-1099
    • Dudoit, S.1    Fridlyand, J.2
  • 32
    • 79955970519 scopus 로고    scopus 로고
    • A review: Accuracy optimization in clustering ensembles using genetic algorithms
    • Ghaemi R, bin Sulaiman N, Ibrahim H, Mustapha N (2011) A review: accuracy optimization in clustering ensembles using genetic algorithms. Artif Intell Rev 35(4):287-318
    • (2011) Artif Intell Rev , vol.35 , Issue.4 , pp. 287-318
    • Ghaemi, R.1    Bin Sulaiman, N.2    Ibrahim, H.3    Mustapha, N.4
  • 33
    • 80053039117 scopus 로고    scopus 로고
    • Cluster ensembles. Wiley interdisciplinary reviews
    • Ghosh J, Acharya A (2011) Cluster ensembles. Wiley interdisciplinary reviews. Data Min Knowl Disc 1(4):305-315
    • (2011) Data Min Knowl Disc , vol.1 , Issue.4 , pp. 305-315
    • Ghosh, J.1    Acharya, A.2
  • 44
    • 0032131147 scopus 로고    scopus 로고
    • A fast and high quality multilevel scheme for partitioning irregular graphs
    • PII S1064827595287997
    • Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20(1):359-392 (Pubitemid 128689516)
    • (1998) SIAM Journal of Scientific Computing , vol.20 , Issue.1 , pp. 359-392
    • Karypis, G.1    Kumar, V.2
  • 47
    • 34547251368 scopus 로고    scopus 로고
    • A generic framework for efficient subspace clustering of high-dimensional data
    • DOI 10.1109/ICDM.2005.5, 1565686, Proceedings - Fifth IEEE International Conference on Data Mining, ICDM 2005
    • Kriegel H-P, Kroger P, Renz M, Wurst S (2005) A generic framework for efficient subspace clustering of high-dimensional data. In: Proceedings of the IEEE international conference on data mining (ICDM), pp 250-257 (Pubitemid 47385700)
    • (2005) Proceedings - IEEE International Conference on Data Mining, ICDM , pp. 250-257
    • Kriegel, H.-P.1    Kroger, P.2    Renz, M.3    Wurst, S.4
  • 48
    • 67149084291 scopus 로고    scopus 로고
    • Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
    • Kriegel H-P, Kröger P, Zimek A (2009) Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACMTrans Knowl Disc Data (TKDD) 3(1):1-58
    • (2009) ACMTrans Knowl Disc Data (TKDD) , vol.3 , Issue.1 , pp. 1-58
    • Kriegel, H.-P.1    Kröger, P.2    Zimek, A.3
  • 49
    • 0022735230 scopus 로고
    • NP-hard problems in hierarchical-tree clustering
    • Krivánek M, Morávek J (1986) NP-hard problems in hierarchical-tree clustering. Acta Inform 23(3):311- 323
    • (1986) Acta Inform , vol.23 , Issue.3 , pp. 311-323
    • Krivánek, M.1    Morávek, J.2
  • 50
    • 0002719797 scopus 로고
    • The Hungarian method for the assignment problem
    • Kuhn HW (1955) The Hungarian method for the assignment problem. Naval Res Logist Q 2:83-97
    • (1955) Naval Res Logist Q , vol.2 , pp. 83-97
    • Kuhn, H.W.1
  • 52
    • 84876811202 scopus 로고    scopus 로고
    • RCV1: A newbenchmark collection for text categorization research
    • Lewis DD,Yang Y, Rose T, Li F (2004) RCV1: a newbenchmark collection for text categorization research. J Mach Learn Res 5:361-397
    • (2004) J Mach Learn Res , vol.5 , pp. 361-397
    • Lewis, D.D.1    Yang, Y.2    Rose, T.3    Li, F.4
  • 57
    • 41149085604 scopus 로고    scopus 로고
    • Robust projected clustering
    • Moise G, Sander J, Ester M (2008) Robust projected clustering. Knowl Inf Syst 14(3):273-298
    • (2008) Knowl Inf Syst , vol.14 , Issue.3 , pp. 273-298
    • Moise, G.1    Sander, J.2    Ester, M.3
  • 58
    • 71949123741 scopus 로고    scopus 로고
    • Subspace and projected clustering: Experimental evaluation and analysis
    • MoiseG, Zimek A, Kröger P,Kriegel H-P, Sander J (2009) Subspace and projected clustering: experimental evaluation and analysis. Knowl Inf Syst 21(3):299-326
    • (2009) Knowl Inf Syst , vol.21 , Issue.3 , pp. 299-326
    • Moise, G.1    Zimek, A.2    Kröger, P.3    Kriegel, H.-P.4    Sander, J.5
  • 60
    • 84865086248 scopus 로고    scopus 로고
    • Evaluating clustering in subspace projections of high dimensional data
    • Müller E, Günnemann S, Assent I, Seidl T (2009b) Evaluating clustering in subspace projections of high dimensional data. Proc VLDB Endow (PVLDB) 2(1):1270-1281
    • (2009) Proc VLDB Endow (PVLDB) , vol.2 , Issue.1 , pp. 1270-1281
    • Müller, E.1    Günnemann, S.2    Assent, I.3    Seidl, T.4
  • 65
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: A review
    • Parsons L, Haque E, LiuH (2004) Subspace clustering for high dimensional data: a review. SIGKDD Explor 6(1):90-105
    • (2004) SIGKDD Explor , vol.6 , Issue.1 , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 68
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire R (1990) The strength of weak learnability. Mach Learn 5(2):197-227
    • (1990) Mach Learn , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.1
  • 70
    • 0000852513 scopus 로고
    • Multiobjective optimization using nondominated sorting in genetic algorithms
    • Srinivas N, Deb K (1994) Multiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2(3):221-248
    • (1994) Evol Comput , vol.2 , Issue.3 , pp. 221-248
    • Srinivas, N.1    Deb, K.2
  • 71
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - A knowledge reuse framework for combining multiple partitions
    • Strehl A, Ghosh J (2002) Cluster ensembles - a knowledge reuse framework for combining multiple partitions. J Mach Learn Res 3:583-617
    • (2002) J Mach Learn Res , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 81
    • 0742324835 scopus 로고    scopus 로고
    • FINDIT: A fast and intelligent subspace clustering algorithm using dimension voting
    • Woo K-G, Lee J-H, KimM-H, Lee Y-J (2004) FINDIT: a fast and intelligent subspace clustering algorithm using dimension voting. Inf Softw Technol 46(4):255-271
    • (2004) Inf Softw Technol , vol.46 , Issue.4 , pp. 255-271
    • Woo, K.-G.1    Lee, J.-H.2    Kim, M.-H.3    Lee, Y.-J.4
  • 82
    • 33646087885 scopus 로고    scopus 로고
    • An aggregated clustering approach using multi-ant colonies algorithms
    • Yang Y, KamelMS (2006) An aggregated clustering approach using multi-ant colonies algorithms. Pattern Recog 39(7):1278-1289
    • (2006) Pattern Recog , vol.39 , Issue.7 , pp. 1278-1289
    • Yang, Y.1    Kamel, M.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.