-
1
-
-
33750312873
-
Finding hierarchies of subspace clusters
-
Achtert E, Böhm C, Kriegel H-P, Kröger P, Müller-Gorman I, Zimek A (2006) Finding hierarchies of subspace clusters. In: Proceedings of the European conference on principles and practice of knowledge discovery in databases (PKDD), pp 446-453
-
(2006)
Proceedings of the European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD)
, pp. 446-453
-
-
Achtert, E.1
Böhm, C.2
Kriegel, H.-P.3
Kröger, P.4
Müller-Gorman, I.5
Zimek, A.6
-
2
-
-
38049175016
-
Detection and visualization of subspace cluster hierarchies
-
Achtert E, Böhm C, Kriegel H-P, Kröger P, Müller-Gorman I, Zimek A (2007) Detection and visualization of subspace cluster hierarchies. In: Proceedings of the international conference on database systems for advanced applications (DASFAA), pp 152-163
-
(2007)
Proceedings of the International Conference on Database Systems for Advanced Applications (DASFAA)
, pp. 152-163
-
-
Achtert, E.1
Böhm, C.2
Kriegel, H.-P.3
Kröger, P.4
Müller-Gorman, I.5
Zimek, A.6
-
3
-
-
0347718066
-
Fast algorithms for projected clustering
-
Aggarwal CC, Procopiuc CM,Wolf JL, Yu PS, Park JS (1999) Fast algorithms for projected clustering. In: Proceedings of the ACM SIGMOD international conference on management of data, pp 61-72 (Pubitemid 129597324)
-
(1999)
SIGMOD Record (ACM Special Interest Group on Management of Data)
, vol.28
, Issue.2
, pp. 61-72
-
-
Aggarwal, C.C.1
Wolf, J.L.2
Yu, P.S.3
Procopiuc, C.4
Park, J.S.5
-
5
-
-
0347172110
-
OPTICS: Ordering points to identify the clustering structure
-
Ankerst M, Breunig MM, Kriegel H-P, Sander J (1999) OPTICS: ordering points to identify the clustering structure. In: Proceedings ACMSIGMOD international conference on management of data, pp 49-60 (Pubitemid 129597323)
-
(1999)
SIGMOD Record (ACM Special Interest Group on Management of Data)
, vol.28
, Issue.2
, pp. 49-60
-
-
Ankerst, M.1
Breunig, M.M.2
Kriegel, H.-P.3
Sander, J.4
-
15
-
-
0030211964
-
Bagging predictors
-
Breiman L (1996) Bagging predictors. Mach Learn 24(2):123-140 (Pubitemid 126724382)
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
19
-
-
0036530772
-
A fast and elitist multiobjective genetic algorithm: NSGA-II
-
DOI 10.1109/4235.996017, PII S1089778X02041012
-
Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182-197 (Pubitemid 34555372)
-
(2002)
IEEE Transactions on Evolutionary Computation
, vol.6
, Issue.2
, pp. 182-197
-
-
Deb, K.1
Pratap, A.2
Agarwal, S.3
Meyarivan, T.4
-
20
-
-
0002629270
-
Maximum likelihood from incomplete data via theEMalgorithm
-
Dempster AP, LairdNM, RdinDB (1977) Maximum likelihood from incomplete data via theEMalgorithm. J R Stat Soc 39:1-38
-
(1977)
J R Stat Soc
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rdin, D.B.3
-
23
-
-
33847338032
-
Locally adaptive metrics for clustering high dimensional data
-
DOI 10.1007/s10618-006-0060-8
-
Domeniconi C, Gunopulos D,MaS,YanB,Al-Razgan M, PapadopoulosD (2007) Locally adaptive metrics for clustering high dimensional data. Data Min Knowl Disc 14(1):63-97 (Pubitemid 46345356)
-
(2007)
Data Mining and Knowledge Discovery
, vol.14
, Issue.1
, pp. 63-97
-
-
Domeniconi, C.1
Gunopulos, D.2
Ma, S.3
Yan, B.4
Al-Razgan, M.5
Papadopoulos, D.6
-
24
-
-
0038391443
-
Bagging to improve the accuracy of a clustering procedure
-
DOI 10.1093/bioinformatics/btg038
-
Dudoit S, Fridlyand J (2003) Bagging to improve the accuracy of a clustering procedure. Bioinformatics 19(9):1090-1099 (Pubitemid 36790010)
-
(2003)
Bioinformatics
, vol.19
, Issue.9
, pp. 1090-1099
-
-
Dudoit, S.1
Fridlyand, J.2
-
32
-
-
79955970519
-
A review: Accuracy optimization in clustering ensembles using genetic algorithms
-
Ghaemi R, bin Sulaiman N, Ibrahim H, Mustapha N (2011) A review: accuracy optimization in clustering ensembles using genetic algorithms. Artif Intell Rev 35(4):287-318
-
(2011)
Artif Intell Rev
, vol.35
, Issue.4
, pp. 287-318
-
-
Ghaemi, R.1
Bin Sulaiman, N.2
Ibrahim, H.3
Mustapha, N.4
-
33
-
-
80053039117
-
Cluster ensembles. Wiley interdisciplinary reviews
-
Ghosh J, Acharya A (2011) Cluster ensembles. Wiley interdisciplinary reviews. Data Min Knowl Disc 1(4):305-315
-
(2011)
Data Min Knowl Disc
, vol.1
, Issue.4
, pp. 305-315
-
-
Ghosh, J.1
Acharya, A.2
-
40
-
-
83055191163
-
External evaluationmeasures for subspace clustering
-
Günnemann S, Färber I, Müller E, Assent I, Seidl T (2011b) External evaluationmeasures for subspace clustering. In: Proceedings of the ACM conference on information and knowledge management (CIKM), pp 1363-1372
-
(2011)
Proceedings of the ACM Conference on Information and Knowledge Management (CIKM)
, pp. 1363-1372
-
-
Günnemann, S.1
Färber, I.2
Müller, E.3
Assent, I.4
Seidl, T.5
-
44
-
-
0032131147
-
A fast and high quality multilevel scheme for partitioning irregular graphs
-
PII S1064827595287997
-
Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20(1):359-392 (Pubitemid 128689516)
-
(1998)
SIAM Journal of Scientific Computing
, vol.20
, Issue.1
, pp. 359-392
-
-
Karypis, G.1
Kumar, V.2
-
47
-
-
34547251368
-
A generic framework for efficient subspace clustering of high-dimensional data
-
DOI 10.1109/ICDM.2005.5, 1565686, Proceedings - Fifth IEEE International Conference on Data Mining, ICDM 2005
-
Kriegel H-P, Kroger P, Renz M, Wurst S (2005) A generic framework for efficient subspace clustering of high-dimensional data. In: Proceedings of the IEEE international conference on data mining (ICDM), pp 250-257 (Pubitemid 47385700)
-
(2005)
Proceedings - IEEE International Conference on Data Mining, ICDM
, pp. 250-257
-
-
Kriegel, H.-P.1
Kroger, P.2
Renz, M.3
Wurst, S.4
-
48
-
-
67149084291
-
Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
-
Kriegel H-P, Kröger P, Zimek A (2009) Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACMTrans Knowl Disc Data (TKDD) 3(1):1-58
-
(2009)
ACMTrans Knowl Disc Data (TKDD)
, vol.3
, Issue.1
, pp. 1-58
-
-
Kriegel, H.-P.1
Kröger, P.2
Zimek, A.3
-
49
-
-
0022735230
-
NP-hard problems in hierarchical-tree clustering
-
Krivánek M, Morávek J (1986) NP-hard problems in hierarchical-tree clustering. Acta Inform 23(3):311- 323
-
(1986)
Acta Inform
, vol.23
, Issue.3
, pp. 311-323
-
-
Krivánek, M.1
Morávek, J.2
-
50
-
-
0002719797
-
The Hungarian method for the assignment problem
-
Kuhn HW (1955) The Hungarian method for the assignment problem. Naval Res Logist Q 2:83-97
-
(1955)
Naval Res Logist Q
, vol.2
, pp. 83-97
-
-
Kuhn, H.W.1
-
52
-
-
84876811202
-
RCV1: A newbenchmark collection for text categorization research
-
Lewis DD,Yang Y, Rose T, Li F (2004) RCV1: a newbenchmark collection for text categorization research. J Mach Learn Res 5:361-397
-
(2004)
J Mach Learn Res
, vol.5
, pp. 361-397
-
-
Lewis, D.D.1
Yang, Y.2
Rose, T.3
Li, F.4
-
58
-
-
71949123741
-
Subspace and projected clustering: Experimental evaluation and analysis
-
MoiseG, Zimek A, Kröger P,Kriegel H-P, Sander J (2009) Subspace and projected clustering: experimental evaluation and analysis. Knowl Inf Syst 21(3):299-326
-
(2009)
Knowl Inf Syst
, vol.21
, Issue.3
, pp. 299-326
-
-
Moise, G.1
Zimek, A.2
Kröger, P.3
Kriegel, H.-P.4
Sander, J.5
-
59
-
-
77951149821
-
Relevant subspace clustering: Mining themost interesting non-redundant concepts in high dimensional data
-
Müller E, Assent I, Günnemann S, Krieger R, Seidl T (2009a)Relevant subspace clustering: mining themost interesting non-redundant concepts in high dimensional data. In: Proceedings of the IEEE international conference on data mining (ICDM), pp 377-386
-
(2009)
Proceedings of the IEEE International Conference on Data Mining (ICDM)
, pp. 377-386
-
-
Müller, E.1
Assent, I.2
Günnemann, S.3
Krieger, R.4
Seidl, T.5
-
60
-
-
84865086248
-
Evaluating clustering in subspace projections of high dimensional data
-
Müller E, Günnemann S, Assent I, Seidl T (2009b) Evaluating clustering in subspace projections of high dimensional data. Proc VLDB Endow (PVLDB) 2(1):1270-1281
-
(2009)
Proc VLDB Endow (PVLDB)
, vol.2
, Issue.1
, pp. 1270-1281
-
-
Müller, E.1
Günnemann, S.2
Assent, I.3
Seidl, T.4
-
65
-
-
17044376078
-
Subspace clustering for high dimensional data: A review
-
Parsons L, Haque E, LiuH (2004) Subspace clustering for high dimensional data: a review. SIGKDD Explor 6(1):90-105
-
(2004)
SIGKDD Explor
, vol.6
, Issue.1
, pp. 90-105
-
-
Parsons, L.1
Haque, E.2
Liu, H.3
-
68
-
-
0025448521
-
The strength of weak learnability
-
Schapire R (1990) The strength of weak learnability. Mach Learn 5(2):197-227
-
(1990)
Mach Learn
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.1
-
70
-
-
0000852513
-
Multiobjective optimization using nondominated sorting in genetic algorithms
-
Srinivas N, Deb K (1994) Multiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2(3):221-248
-
(1994)
Evol Comput
, vol.2
, Issue.3
, pp. 221-248
-
-
Srinivas, N.1
Deb, K.2
-
71
-
-
0041965980
-
Cluster ensembles - A knowledge reuse framework for combining multiple partitions
-
Strehl A, Ghosh J (2002) Cluster ensembles - a knowledge reuse framework for combining multiple partitions. J Mach Learn Res 3:583-617
-
(2002)
J Mach Learn Res
, vol.3
, pp. 583-617
-
-
Strehl, A.1
Ghosh, J.2
-
81
-
-
0742324835
-
FINDIT: A fast and intelligent subspace clustering algorithm using dimension voting
-
Woo K-G, Lee J-H, KimM-H, Lee Y-J (2004) FINDIT: a fast and intelligent subspace clustering algorithm using dimension voting. Inf Softw Technol 46(4):255-271
-
(2004)
Inf Softw Technol
, vol.46
, Issue.4
, pp. 255-271
-
-
Woo, K.-G.1
Lee, J.-H.2
Kim, M.-H.3
Lee, Y.-J.4
-
82
-
-
33646087885
-
An aggregated clustering approach using multi-ant colonies algorithms
-
Yang Y, KamelMS (2006) An aggregated clustering approach using multi-ant colonies algorithms. Pattern Recog 39(7):1278-1289
-
(2006)
Pattern Recog
, vol.39
, Issue.7
, pp. 1278-1289
-
-
Yang, Y.1
Kamel, M.S.2
|