메뉴 건너뛰기




Volumn 4, Issue 1, 2011, Pages 54-70

Bayesian cluster ensembles

Author keywords

Bayesian models; Cluster ensembles

Indexed keywords

APPROXIMATION ALGORITHMS; BAYESIAN NETWORKS; CLUSTERING ALGORITHMS; LEARNING ALGORITHMS;

EID: 79551693227     PISSN: 19321872     EISSN: 19321864     Source Type: Journal    
DOI: 10.1002/sam.10098     Document Type: Article
Times cited : (107)

References (20)
  • 1
    • 85196072444 scopus 로고    scopus 로고
    • A mixture model for clustering ensembles, In SDM, -
    • A. Topchy, A. Jain, and W. Punch, A mixture model for clustering ensembles, In SDM, 2004, 379-390.
    • (2004) , pp. 379-390
    • Topchy, A.1    Jain, A.2    Punch, W.3
  • 2
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles-a knowledge reuse framework for combining multiple partitions
    • ,
    • A. Strehl and J. Ghosh, Cluster ensembles-a knowledge reuse framework for combining multiple partitions, JMLR 3 (2002), 583-617.
    • (2002) JMLR , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 3
    • 33947159574 scopus 로고    scopus 로고
    • Evaluation of stability of k-means cluster ensembles with respect to random initialization
    • ,
    • L. Kuncheva and D. Vetrov, Evaluation of stability of k-means cluster ensembles with respect to random initialization, PAMI 28 (2006), 1798-1808.
    • (2006) PAMI , vol.28 , pp. 1798-1808
    • Kuncheva, L.1    Vetrov, D.2
  • 4
    • 85196053754 scopus 로고    scopus 로고
    • Privacy-preserving distributed k-means clustering over arbitrarily partitioned data, In KDD, -
    • G. Jagannathan and R. Wright, Privacy-preserving distributed k-means clustering over arbitrarily partitioned data, In KDD, 2005, 593-599.
    • (2005) , pp. 593-599
    • Jagannathan, G.1    Wright, R.2
  • 5
    • 85196104587 scopus 로고    scopus 로고
    • Solving cluster ensemble problems by bipartite graph partitioning, In ICML, -
    • X. Fern and C. Brodley, Solving cluster ensemble problems by bipartite graph partitioning, In ICML, 2004, 281-288.
    • (2004) , pp. 281-288
    • Fern, X.1    Brodley, C.2
  • 6
    • 85196081962 scopus 로고    scopus 로고
    • Weighted cluster ensemble, In SDM, -
    • M. Al-Razgan and C. Domeniconi, Weighted cluster ensemble, In SDM, 2006, 258-269.
    • (2006) , pp. 258-269
    • Al-Razgan, M.1    Domeniconi, C.2
  • 7
    • 85196061239 scopus 로고    scopus 로고
    • Random projection for high dimensional data clustering: a cluster ensemble approach, In ICML
    • X. Fern and C. Brodley, Random projection for high dimensional data clustering: a cluster ensemble approach, In ICML, 2003, 186-193.
    • (2003) , pp. 186-193
    • Fern, X.1    Brodley, C.2
  • 8
    • 0032131147 scopus 로고    scopus 로고
    • A fast and high quality multilevel scheme for partitioning irregular graphs
    • ,
    • G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J Sci Comput 20 (1999), 359-392.
    • (1999) SIAM J Sci Comput , vol.20 , pp. 359-392
    • Karypis, G.1    Kumar, V.2
  • 9
    • 0030686036 scopus 로고    scopus 로고
    • Multilevel hypergraph partitioning: applications in VLSI design, In ACM/IEEE Design Automation Conference
    • G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, Multilevel hypergraph partitioning: applications in VLSI design, In ACM/IEEE Design Automation Conference, 1997, 526-529.
    • (1997) , pp. 526-529
    • Karypis, G.1    Aggarwal, R.2    Kumar, V.3    Shekhar, S.4
  • 10
    • 85196119968 scopus 로고    scopus 로고
    • Data clustering using evidence accumulation, In ICPR, -
    • A. Fred and A. Jain, Data clustering using evidence accumulation, In ICPR, 2002, 276-280.
    • (2002) , pp. 276-280
    • Fred, A.1    Jain, A.2
  • 11
    • 85196097437 scopus 로고    scopus 로고
    • Solving consensus and semi-supervised clustering problems using nonnegative matrix factorization, In ICDM,
    • T. Li, C. Ding, and M. Jordan, Solving consensus and semi-supervised clustering problems using nonnegative matrix factorization, In ICDM, 2007.
    • (2007)
    • Li, T.1    Ding, C.2    Jordan, M.3
  • 12
    • 85196117134 scopus 로고    scopus 로고
    • Comparing, contrasting and combining clusters in viral gene expression data, In Workshop on Intelligent Data Analysis in Medicine and Pharmocology, -
    • P. Kellam, X. Liu, N. Martin, C. Orengo, S. Swift, and A. Tucker, Comparing, contrasting and combining clusters in viral gene expression data, In Workshop on Intelligent Data Analysis in Medicine and Pharmocology, 2001, 56-62.
    • (2001) , pp. 56-62
    • Kellam, P.1    Liu, X.2    Martin, N.3    Orengo, C.4    Swift, S.5    Tucker, A.6
  • 13
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data
    • ,
    • S. Monti, P. Tamayo, J. Mesirov, and T. Golub, Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data, Mach Learn J 52 (2003), 91-118.
    • (2003) Mach Learn J , vol.52 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, T.4
  • 14
    • 85196067217 scopus 로고    scopus 로고
    • Latent Dirichlet conditional naive-Bayes models, In ICDM, -
    • A. Banerjee and H. Shan, Latent Dirichlet conditional naive-Bayes models, In ICDM, 2007, 421-426.
    • (2007) , pp. 421-426
    • Banerjee, A.1    Shan, H.2
  • 15
    • 85196054829 scopus 로고    scopus 로고
    • Mixed-membership naive Bayes models. Data Mining and Knowledge Discovery,
    • H. Shan and A. Banerjee, Mixed-membership naive Bayes models. Data Mining and Knowledge Discovery, 2010.
    • (2010)
    • Shan, H.1    Banerjee, A.2
  • 16
    • 0141607824 scopus 로고    scopus 로고
    • Latent Dirichlocation
    • ,
    • D. Blei, A. Ng, and M. Jordan, Latent Dirichlet allocation, JMLR 3 (2003), 993-1022.
    • (2003) JMLR , vol.3 , pp. 993-1022
    • Blei, D.1    Ng, A.2    Jordan, M.3
  • 17
    • 85196083043 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants, In Learning in Graphical Models, -
    • R. Neal and G. Hinton, A view of the EM algorithm that justifies incremental, sparse, and other variants, In Learning in Graphical Models, 1998, 355-368.
    • (1998) , pp. 355-368
    • Neal, R.1    Hinton, G.2
  • 18
    • 33644655237 scopus 로고    scopus 로고
    • Clusterer ensemble
    • ,
    • Z. Zhou and W. Tang, Clusterer ensemble, Knowl Based Syst 1 (2006), 77-83.
    • (2006) Knowl Based Syst , vol.1 , pp. 77-83
    • Zhou, Z.1    Tang, W.2
  • 19
    • 0004008854 scopus 로고
    • Pattern Recognition with Fuzzy Objective Function Algorithms
    • Plenum Press, New York,
    • J. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, 1981.
    • (1981)
    • Bezdek, J.1
  • 20
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • ,
    • B. Frey and D. Dueck, Clustering by passing messages between data points, Science 315 (2007), 972-976.
    • (2007) Science , vol.315 , pp. 972-976
    • Frey, B.1    Dueck, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.