메뉴 건너뛰기




Volumn 1, Issue , 2009, Pages 208-219

Bayesian cluster ensembles

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN; CLUSTER ENSEMBLES; CLUSTERINGS; DATA SETS; DISTRIBUTED CLUSTERS; GIBBS SAMPLING; MEMBERSHIP MODELS; MISSING VALUES; OTHER ALGORITHMS; ROBUST CONSENSUS; VARIATIONAL APPROXIMATION;

EID: 72849137910     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (36)

References (22)
  • 1
    • 33745445856 scopus 로고    scopus 로고
    • M. Al-Razgan and C. Domeniconi. Weighted cluster ensemble, In SDM, pp. 258-269, 2006.
    • M. Al-Razgan and C. Domeniconi. Weighted cluster ensemble, In SDM, pp. 258-269, 2006.
  • 2
    • 49749117072 scopus 로고    scopus 로고
    • Latent Dirichlet conditional naive-Bayes models
    • A. Banerjee and H. Shan. Latent Dirichlet conditional naive-Bayes models, In ICDM, pp. 421-426, 2007.
    • (2007) ICDM , pp. 421-426
    • Banerjee, A.1    Shan, H.2
  • 4
    • 0141607824 scopus 로고    scopus 로고
    • Latent Dirichlet allocation
    • D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation, JMLR, 3:3993-1022, 2003.
    • (2003) JMLR , vol.3 , pp. 3993-1022
    • Blei, D.1    Ng, A.2    Jordan, M.3
  • 6
    • 1942517297 scopus 로고    scopus 로고
    • Random Projection for High Dimensional Data Clustering: A Cluster Ensemble Approach
    • X. Fern and C. Brodley. Random Projection for High Dimensional Data Clustering: A Cluster Ensemble Approach, In ICML, pp. 186-193, 2003
    • (2003) ICML , pp. 186-193
    • Fern, X.1    Brodley, C.2
  • 7
    • 14344258244 scopus 로고    scopus 로고
    • Solving cluster ensemble problems by bipartite graph partitioning
    • X. Fern and C. Brodley. Solving cluster ensemble problems by bipartite graph partitioning, In ICML, pp. 281-288, 2004.
    • (2004) ICML , pp. 281-288
    • Fern, X.1    Brodley, C.2
  • 8
    • 33845229615 scopus 로고    scopus 로고
    • Data clustering using evidence accumulation
    • A. Fred and A. Jain. Data clustering using evidence accumulation, In ICPR, pp. 276-280, 2002.
    • (2002) ICPR , pp. 276-280
    • Fred, A.1    Jain, A.2
  • 9
    • 1842788824 scopus 로고    scopus 로고
    • Finding scientific topics
    • T. Griffiths and M. Steyvers Finding scientific topics, PNAS, pp.5228-5235, 2004.
    • (2004) PNAS , pp. 5228-5235
    • Griffiths, T.1    Steyvers, M.2
  • 10
    • 32344446366 scopus 로고    scopus 로고
    • G. Jagannathan and R. Wright. Privacy-preserving distributed k-means clustering over arbitrarily partitioned data, In KDD, pp. 593-599, 2005.
    • G. Jagannathan and R. Wright. Privacy-preserving distributed k-means clustering over arbitrarily partitioned data, In KDD, pp. 593-599, 2005.
  • 12
    • 0032131147 scopus 로고    scopus 로고
    • A fast and high quality multilevel scheme for partitioning irregular graphs
    • G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM Journal on Scientific Computing, 20(1):359-392, 1999.
    • (1999) SIAM Journal on Scientific Computing , vol.20 , Issue.1 , pp. 359-392
    • Karypis, G.1    Kumar, V.2
  • 14
    • 33947159574 scopus 로고    scopus 로고
    • Evaluation of stability of k-means cluster ensembles with respect to random initialization
    • L. Kuncheva and D. Vetrov. Evaluation of stability of k-means cluster ensembles with respect to random initialization, PAMI, 28(11):1798-1808, 2006.
    • (2006) PAMI , vol.28 , Issue.11 , pp. 1798-1808
    • Kuncheva, L.1    Vetrov, D.2
  • 15
    • 49749129595 scopus 로고    scopus 로고
    • Solving consensus and semi-supervised clustering problems using nonnegative matrix factorization
    • T. Li, C. Ding, and M. Jordan. Solving consensus and semi-supervised clustering problems using nonnegative matrix factorization, In ICDM, 2007.
    • (2007) ICDM
    • Li, T.1    Ding, C.2    Jordan, M.3
  • 16
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data
    • S. Monti, P. Tamayo, J. Mesirov, and T. Golub. Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data, Machine Learning Journal, 52:91-118, 2003.
    • (2003) Machine Learning Journal , vol.52 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, T.4
  • 17
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • R. Neal and G. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other variants. Learning in Graphical Models, pp.355-368, 1998
    • (1998) Learning in Graphical Models , pp. 355-368
    • Neal, R.1    Hinton, G.2
  • 19
    • 72849115156 scopus 로고    scopus 로고
    • Mixed-membership naive Bayes models,
    • Technical Report, TR 09-002, Department of Computer Science and Engineering, University of Minnesota, Twin Cities
    • H. Shan and A. Banerjee. Mixed-membership naive Bayes models, Technical Report, TR 09-002, Department of Computer Science and Engineering, University of Minnesota, Twin Cities, 2009.
    • (2009)
    • Shan, H.1    Banerjee, A.2
  • 20
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - a knowledge reuse framework for combining multiple partitions
    • A. Strehl and J. Ghosh. Cluster ensembles - a knowledge reuse framework for combining multiple partitions, JMLR, 3:583-617, 2002.
    • (2002) JMLR , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 21
    • 2942558961 scopus 로고    scopus 로고
    • A. Topchy, A. Jain, and W. Punch. A mixture model for clustering ensembles, In SDM, pp. 379-390, 2004.
    • A. Topchy, A. Jain, and W. Punch. A mixture model for clustering ensembles, In SDM, pp. 379-390, 2004.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.