메뉴 건너뛰기




Volumn 25, Issue 5, 2011, Pages 1417-1435

Predicting Spatial Distribution of Snow Water Equivalent Using Multivariate Non-linear Regression and Computational Intelligence Methods

Author keywords

Artificial neural network; Genetic algorithm; Multivariate regression; Snow water equivalent; Spatial distribution

Indexed keywords

ARTIFICIAL NEURAL NETWORK; COMPUTATIONAL INTELLIGENCE METHODS; DELTA-BAR-DELTA; INPUT PARAMETER; MOUNTAINOUS BASINS; MULTIVARIATE NON-LINEAR REGRESSION; MULTIVARIATE REGRESSION; ORDINARY KRIGING; SIGMOID ACTIVATION FUNCTION; SNOW DEPTHS; SNOW WATER EQUIVALENT; STUDY AREAS;

EID: 79952738488     PISSN: 09204741     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11269-010-9751-4     Document Type: Article
Times cited : (38)

References (50)
  • 1
    • 28344455955 scopus 로고    scopus 로고
    • An artificial neural network model for generating hydrograph from hydro-meteorological parameters
    • Ahmad S, Simonovic SP (2005) An artificial neural network model for generating hydrograph from hydro-meteorological parameters. J Hydrol 315: 236-251.
    • (2005) J Hydrol , vol.315 , pp. 236-251
    • Ahmad, S.1    Simonovic, S.P.2
  • 2
    • 0033989213 scopus 로고    scopus 로고
    • Combining binary decision tree and geostatistical methods to estimate snow distribution in a mountain watershed
    • Balk B, Elder K (2000) Combining binary decision tree and geostatistical methods to estimate snow distribution in a mountain watershed. Water Resour Res 36: 13-26.
    • (2000) Water Resour Res , vol.36 , pp. 13-26
    • Balk, B.1    Elder, K.2
  • 3
    • 0026359367 scopus 로고
    • Distribution snowmelt simulations in an alpine catchment's: 1. Model evaluation on the basis of snow cover patterns
    • Bloschl G, Kirnbauer R, Gutknecht D (1991) Distribution snowmelt simulations in an alpine catchment's: 1. Model evaluation on the basis of snow cover patterns. Water Resour Res 27: 3171-3179.
    • (1991) Water Resour Res , vol.27 , pp. 3171-3179
    • Bloschl, G.1    Kirnbauer, R.2    Gutknecht, D.3
  • 4
    • 33750961984 scopus 로고    scopus 로고
    • The distribution of daily snow water equivalent in the central Italian Alps
    • Bocchiola D, Rosso R (2007) The distribution of daily snow water equivalent in the central Italian Alps. Adv Water Resour 30: 135-147.
    • (2007) Adv Water Resour , vol.30 , pp. 135-147
    • Bocchiola, D.1    Rosso, R.2
  • 5
    • 0030300859 scopus 로고    scopus 로고
    • Scaling and multifractal depth-duration-frequency curves of storm precipitation
    • Burlando P, Rosso R (1996) Scaling and multifractal depth-duration-frequency curves of storm precipitation. J Hydrol 187(1-2): 45-64.
    • (1996) J Hydrol , vol.187 , Issue.1-2 , pp. 45-64
    • Burlando, P.1    Rosso, R.2
  • 6
    • 0036891551 scopus 로고    scopus 로고
    • A new feature extraction technique for on-line recognition of handwritten alphanumeric characters
    • Chakraborty B, Chakraborty G (2002) A new feature extraction technique for on-line recognition of handwritten alphanumeric characters. Inf Sci 148: 55-70.
    • (2002) Inf Sci , vol.148 , pp. 55-70
    • Chakraborty, B.1    Chakraborty, G.2
  • 7
    • 60749116339 scopus 로고    scopus 로고
    • Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks
    • Chauhan S, Shrivastava RK (2009) Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks. Water Resour Manage 23(5): 825-837.
    • (2009) Water Resour Manage , vol.23 , Issue.5 , pp. 825-837
    • Chauhan, S.1    Shrivastava, R.K.2
  • 8
    • 31044455061 scopus 로고    scopus 로고
    • Integration of artificial neural networks with conceptual models in rainfall-runoff modeling
    • Chen J, Adams BJ (2006) Integration of artificial neural networks with conceptual models in rainfall-runoff modeling. J Hydrol 318: 232-249.
    • (2006) J Hydrol , vol.318 , pp. 232-249
    • Chen, J.1    Adams, B.J.2
  • 9
    • 20344369583 scopus 로고    scopus 로고
    • Groundwater level forecasting using artificial neural networks
    • Daliakopoulos I, Coulibaly P, Tsanis IK (2005) Groundwater level forecasting using artificial neural networks. J Hydrol 309: 229-240.
    • (2005) J Hydrol , vol.309 , pp. 229-240
    • Daliakopoulos, I.1    Coulibaly, P.2    Tsanis, I.K.3
  • 10
    • 32044443415 scopus 로고    scopus 로고
    • Flood estimation at ungauged sites using artificial neural networks
    • Dawson CW, Abrahart RJ, Shamseldin AY, Wilby RL (2006) Flood estimation at ungauged sites using artificial neural networks. J Hydrol 319: 391-409.
    • (2006) J Hydrol , vol.319 , pp. 391-409
    • Dawson, C.W.1    Abrahart, R.J.2    Shamseldin, A.Y.3    Wilby, R.L.4
  • 11
    • 0032650301 scopus 로고    scopus 로고
    • On the encapsulation of numerical-hydraulic models in artificial neural network
    • Dibike YB, Solomatine DP, Abbott MB (1999) On the encapsulation of numerical-hydraulic models in artificial neural network. J Hydraul Res 37(2): 147-161.
    • (1999) J Hydraul Res , vol.37 , Issue.2 , pp. 147-161
    • Dibike, Y.B.1    Solomatine, D.P.2    Abbott, M.B.3
  • 12
    • 0029413026 scopus 로고
    • A land cover based snow cover representation for distributed hydrological models
    • Donald JR, Soulis ED, Kouwen N, Pietroniro A (1995) A land cover based snow cover representation for distributed hydrological models. Water Resour Res 31: 995-1009.
    • (1995) Water Resour Res , vol.31 , pp. 995-1009
    • Donald, J.R.1    Soulis, E.D.2    Kouwen, N.3    Pietroniro, A.4
  • 13
    • 0026281811 scopus 로고
    • Snow accumulation and distribution in an alpine watershed
    • Elder K, Dozier J, Michaelsen J (1991) Snow accumulation and distribution in an alpine watershed. Water Resour Res 27: 1541-1552.
    • (1991) Water Resour Res , vol.27 , pp. 1541-1552
    • Elder, K.1    Dozier, J.2    Michaelsen, J.3
  • 15
    • 0032147493 scopus 로고    scopus 로고
    • Estimating the spatial distribution of snow water equivalent in a mountain watershed
    • Elder K, Rosenthal R, Davis RE (1998) Estimating the spatial distribution of snow water equivalent in a mountain watershed. Hydrol Process 12: 1793-1808.
    • (1998) Hydrol Process , vol.12 , pp. 1793-1808
    • Elder, K.1    Rosenthal, R.2    Davis, R.E.3
  • 16
    • 0347062586 scopus 로고    scopus 로고
    • Analysis of hydraulic pressure fluctuation in deep geologic formations in Tono area, Japan using artificial neural networks
    • Gautam MR, Watanabe K, Saegusa H (2003) Analysis of hydraulic pressure fluctuation in deep geologic formations in Tono area, Japan using artificial neural networks. J Hydrol 284: 174-192.
    • (2003) J Hydrol , vol.284 , pp. 174-192
    • Gautam, M.R.1    Watanabe, K.2    Saegusa, H.3
  • 20
    • 56349165252 scopus 로고    scopus 로고
    • Prediction of dynamic hysteresis loops of nano-crystalline cores
    • Haciismailoglu MC, Kucuk I, Derebasi N (2009) Prediction of dynamic hysteresis loops of nano-crystalline cores. Expert Syst Appl 36: 2225-2227.
    • (2009) Expert Syst Appl , vol.36 , pp. 2225-2227
    • Haciismailoglu, M.C.1    Kucuk, I.2    Derebasi, N.3
  • 22
    • 58149199944 scopus 로고    scopus 로고
    • Role of elevation and aspect in snow distribution in western Himalaya
    • Jain SK, Goswami A, Saraf AK (2009) Role of elevation and aspect in snow distribution in western Himalaya. Water Resour Manage 23: 71-83.
    • (2009) Water Resour Manage , vol.23 , pp. 71-83
    • Jain, S.K.1    Goswami, A.2    Saraf, A.K.3
  • 23
    • 40149105117 scopus 로고    scopus 로고
    • QSAR study of heparanase inhibitors activity using artificial networks and LevenbergeMarquardt algorithm
    • Jalali-Heravi M, Asadollahi-Baboli M, Shahbazikhah P (2008) QSAR study of heparanase inhibitors activity using artificial networks and LevenbergeMarquardt algorithm. Eur J Med Chem 43: 548-556.
    • (2008) Eur J Med Chem , vol.43 , pp. 548-556
    • Jalali-Heravi, M.1    Asadollahi-Baboli, M.2    Shahbazikhah, P.3
  • 25
    • 7444248498 scopus 로고    scopus 로고
    • Evaluation of passive microwave snow water equivalent algorithms in the depth hoar-dominated snowpack of the Kuparuk River Watershed, Alaska, USA
    • Koenig LS, Forster RR (2004) Evaluation of passive microwave snow water equivalent algorithms in the depth hoar-dominated snowpack of the Kuparuk River Watershed, Alaska, USA. Remote Sens Environ 93: 511-527.
    • (2004) Remote Sens Environ , vol.93 , pp. 511-527
    • Koenig, L.S.1    Forster, R.R.2
  • 26
    • 84987483300 scopus 로고
    • Schmelzwasser-Abfluss-Modelle fur Schnee- und Gletshergebiete, Mitteilungen der arbeitsgruppe
    • Lang H, Braun L (1985) Schmelzwasser-Abfluss-Modelle fur Schnee- und Gletshergebiete, Mitteilungen der arbeitsgruppe. Schneedecke und Hydrologie 1: 40-45.
    • (1985) Schneedecke Und Hydrologie , vol.1 , pp. 40-45
    • Lang, H.1    Braun, L.2
  • 27
    • 0029748915 scopus 로고    scopus 로고
    • A neural network model of rainfall-runoff using radial basis functions
    • Mason JC, Price RK, Temme A (1996) A neural network model of rainfall-runoff using radial basis functions. J Hydraul Res 34: 537-548.
    • (1996) J Hydraul Res , vol.34 , pp. 537-548
    • Mason, J.C.1    Price, R.K.2    Temme, A.3
  • 31
    • 33644780638 scopus 로고    scopus 로고
    • Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations
    • Pulliainen J (2006) Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations. Remote Sens Environ 101: 257-269.
    • (2006) Remote Sens Environ , vol.101 , pp. 257-269
    • Pulliainen, J.1
  • 32
    • 0035121564 scopus 로고    scopus 로고
    • Retrieval of regional snow water equivalent from space-borne passive microwave observations
    • Pulliainen J, Hallikainen M (1999) Retrieval of regional snow water equivalent from space-borne passive microwave observations. Remote Sens Environ 75: 76-85.
    • (1999) Remote Sens Environ , vol.75 , pp. 76-85
    • Pulliainen, J.1    Hallikainen, M.2
  • 33
    • 16244386248 scopus 로고    scopus 로고
    • A comparative predictive analysis of neural networks (NNs), nonlinear regression and classification and regression tree (CART) models
    • Razi MA, Athappilly K (2005) A comparative predictive analysis of neural networks (NNs), nonlinear regression and classification and regression tree (CART) models. Expert Syst Appl 29: 65-74.
    • (2005) Expert Syst Appl , vol.29 , pp. 65-74
    • Razi, M.A.1    Athappilly, K.2
  • 35
    • 0033535432 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using an artificial neural network
    • Sajikumar N, Thandaveswara BS (1999) A non-linear rainfall-runoff model using an artificial neural network. J Hydrol 216: 32-55.
    • (1999) J Hydrol , vol.216 , pp. 32-55
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 37
    • 77952290338 scopus 로고    scopus 로고
    • A comparative study of daily pan evaporation estimation using ANN, regression and climate based models
    • Shirsath PB, Singh AK (2010) A comparative study of daily pan evaporation estimation using ANN, regression and climate based models. Water Resour Manage 24: 1571-1581.
    • (2010) Water Resour Manage , vol.24 , pp. 1571-1581
    • Shirsath, P.B.1    Singh, A.K.2
  • 38
    • 0030620406 scopus 로고    scopus 로고
    • Synthesizing shallow seasonal snow cover
    • Shook K, Gray DM (1997) Synthesizing shallow seasonal snow cover. Water Resour Res 33: 419-426.
    • (1997) Water Resour Res , vol.33 , pp. 419-426
    • Shook, K.1    Gray, D.M.2
  • 39
    • 0035481897 scopus 로고    scopus 로고
    • A recurrent neural network classifier for improved retrievals of areal extent of snow cover
    • Simpson JJ, McIntire TJ (2001) A recurrent neural network classifier for improved retrievals of areal extent of snow cover. IEEE Trans Geosci Remote Sens 39(10): 2135-2147.
    • (2001) IEEE Trans Geosci Remote Sens , vol.39 , Issue.10 , pp. 2135-2147
    • Simpson, J.J.1    McIntire, T.J.2
  • 40
    • 33644636765 scopus 로고    scopus 로고
    • A comparative analysis of training methods for artificial neural network rainfall-runoff models
    • Srinivasulu S, Jain R (2006) A comparative analysis of training methods for artificial neural network rainfall-runoff models. Appl Soft Comput 6: 295-306.
    • (2006) Appl Soft Comput , vol.6 , pp. 295-306
    • Srinivasulu, S.1    Jain, R.2
  • 41
    • 77953692036 scopus 로고    scopus 로고
    • Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression
    • Tabari H, Marofi S, Sabziparvar AA (2010) Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression. Irrig Sci 28: 399-406.
    • (2010) Irrig Sci , vol.28 , pp. 399-406
    • Tabari, H.1    Marofi, S.2    Sabziparvar, A.A.3
  • 42
    • 0035866947 scopus 로고    scopus 로고
    • GIS-based modelling of spatial pattern of snow cover duration in an alpine area
    • Tappeiner U, Tappeiner G, Aschenwald J, Tasser E, Ostendorf B (2001) GIS-based modelling of spatial pattern of snow cover duration in an alpine area. Ecol Modell 138: 265-275.
    • (2001) Ecol Modell , vol.138 , pp. 265-275
    • Tappeiner, U.1    Tappeiner, G.2    Aschenwald, J.3    Tasser, E.4    Ostendorf, B.5
  • 43
    • 1242299604 scopus 로고    scopus 로고
    • Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data
    • Tedesco M, Pulliainen J, Takala M, Hallikainen M, Pampaloni P (2004) Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data. Remote Sens Environ 90: 76-85.
    • (2004) Remote Sens Environ , vol.90 , pp. 76-85
    • Tedesco, M.1    Pulliainen, J.2    Takala, M.3    Hallikainen, M.4    Pampaloni, P.5
  • 45
    • 13544274196 scopus 로고    scopus 로고
    • Approximating the sheep milk production curve through the use of artificial neural networks and genetic algorithms
    • Torres M, Hervas C, Amador F (2005) Approximating the sheep milk production curve through the use of artificial neural networks and genetic algorithms. Comput Oper Res 32: 2653-2670.
    • (2005) Comput Oper Res , vol.32 , pp. 2653-2670
    • Torres, M.1    Hervas, C.2    Amador, F.3
  • 47
    • 35448961594 scopus 로고    scopus 로고
    • Identification of atmospheric influences on the estimation of snow water equivalent from AMSR-E measurements
    • Wang JR, Tedesco M (2007) Identification of atmospheric influences on the estimation of snow water equivalent from AMSR-E measurements. Remote Sens Environ 111: 398-408.
    • (2007) Remote Sens Environ , vol.111 , pp. 398-408
    • Wang, J.R.1    Tedesco, M.2
  • 48
    • 0036825917 scopus 로고    scopus 로고
    • Spatial snow modeling of wind-redistributed snow using terrain-based parameters
    • Winstral A, Elder K, Davis RE (2002) Spatial snow modeling of wind-redistributed snow using terrain-based parameters. J Hydrometeorol 3(5): 524-538.
    • (2002) J Hydrometeorol , vol.3 , Issue.5 , pp. 524-538
    • Winstral, A.1    Elder, K.2    Davis, R.E.3
  • 49
    • 10644272571 scopus 로고    scopus 로고
    • Comparison of partial least squares regression and multi-layer neural networks for quantification of nonlinear systems and application to gas phase Fourier transform infrared spectra
    • Yang H, Griffiths PR, Tate JD (2003) Comparison of partial least squares regression and multi-layer neural networks for quantification of nonlinear systems and application to gas phase Fourier transform infrared spectra. Analytica Chimica Acta 489: 125-136.
    • (2003) Analytica Chimica Acta , vol.489 , pp. 125-136
    • Yang, H.1    Griffiths, P.R.2    Tate, J.D.3
  • 50
    • 24944461921 scopus 로고    scopus 로고
    • Predicting RO/NF water quality by modified solution diffusion model and artificial neural networks
    • Zhao Y, Taylor JS, Chellam S (2005) Predicting RO/NF water quality by modified solution diffusion model and artificial neural networks. J Membrane Sci 263: 38-46.
    • (2005) J Membrane Sci , vol.263 , pp. 38-46
    • Zhao, Y.1    Taylor, J.S.2    Chellam, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.