메뉴 건너뛰기




Volumn 36, Issue 7, 2014, Pages 634-643

How the mitochondrion was shaped by radical differences in substrates: What carnitine shuttles and uncoupling tell us about mitochondrial evolution in response to ROS Insights & Perspectives D. Speijer

Author keywords

Beta oxidation; Carnitine shuttle; Mitochondria; Oxygen radicals; Peroxisomes; UCPs

Indexed keywords

5,10 METHYLENETETRAHYDROFOLATE REDUCTASE (FADH2); CARNITINE; FAS LIGAND; FATTY ACID; KETONE BODY; LACTIC ACID; OXYGEN RADICAL; REACTIVE OXYGEN METABOLITE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE; UNCOUPLING PROTEIN; FREE RADICAL;

EID: 84901945229     PISSN: 02659247     EISSN: 15211878     Source Type: Journal    
DOI: 10.1002/bies.201400033     Document Type: Article
Times cited : (36)

References (94)
  • 1
    • 79953249623 scopus 로고    scopus 로고
    • Evolution, structure and function of mitochondrial carriers: a review with new insights
    • Palmieri F, Pierri CL, De Grassi A, Nunes-Nesi A, et al. 2011. Evolution, structure and function of mitochondrial carriers: a review with new insights. Plant J 66: 161-81.
    • (2011) Plant J , vol.66 , pp. 161-181
    • Palmieri, F.1    Pierri, C.L.2    De Grassi, A.3    Nunes-Nesi, A.4
  • 3
    • 80051986176 scopus 로고    scopus 로고
    • Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade
    • Thrash JC, Boyd A, Huggett MJ, Grote J, et al. 2011. Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade. Sci Rep 1: 13.
    • (2011) Sci Rep , vol.1 , pp. 13
    • Thrash, J.C.1    Boyd, A.2    Huggett, M.J.3    Grote, J.4
  • 5
    • 78651427556 scopus 로고    scopus 로고
    • Oxygen radicals shaping evolution: why fatty acid catabolism leads to peroxisomes while neurons do without it
    • Speijer D. 2011. Oxygen radicals shaping evolution: why fatty acid catabolism leads to peroxisomes while neurons do without it. BioEssays 33: 88-94.
    • (2011) BioEssays , vol.33 , pp. 88-94
    • Speijer, D.1
  • 6
    • 77956318447 scopus 로고    scopus 로고
    • Acyl-CoA dehydrogenase 9 is required for the biogenesis of oxidative phosphorylation complex I
    • Nouws J, Nijtmans L, Houten SM, Van Den Brand M, et al. 2010. Acyl-CoA dehydrogenase 9 is required for the biogenesis of oxidative phosphorylation complex I. Cell Metab 12: 283-94.
    • (2010) Cell Metab , vol.12 , pp. 283-294
    • Nouws, J.1    Nijtmans, L.2    Houten, S.M.3    Van Den Brand, M.4
  • 7
    • 17444385984 scopus 로고    scopus 로고
    • Tracing the evolution of a large protein complex in the eukaryotes, NADH:ubiquinone oxidoreductase (Complex I)
    • Gabaldon T, Rainey D, Huynen MA. 2005. Tracing the evolution of a large protein complex in the eukaryotes, NADH:ubiquinone oxidoreductase (Complex I). J Mol Biol 348: 857-70.
    • (2005) J Mol Biol , vol.348 , pp. 857-870
    • Gabaldon, T.1    Rainey, D.2    Huynen, M.A.3
  • 8
    • 33747887707 scopus 로고    scopus 로고
    • Mitochondria, hydrogenosomes and mitosomes: products of evolutionary tinkering
    • Hackstein JH, Tjaden J, Huynen M. 2006. Mitochondria, hydrogenosomes and mitosomes: products of evolutionary tinkering! Curr Genet 50: 225-45.
    • (2006) Curr Genet , vol.50 , pp. 225-245
    • Hackstein, J.H.1    Tjaden, J.2    Huynen, M.3
  • 9
    • 0042266921 scopus 로고    scopus 로고
    • Reconstruction of the proto-mitochondrial metabolism
    • Gabaldon T, Huynen MA. 2003. Reconstruction of the proto-mitochondrial metabolism. Science 301: 609.
    • (2003) Science , vol.301 , pp. 609
    • Gabaldon, T.1    Huynen, M.A.2
  • 10
  • 11
    • 78149455629 scopus 로고    scopus 로고
    • The electron transfer flavoprotein: ubiquinone oxidoreductases
    • Watmough NJ, Frerman FE. 2010. The electron transfer flavoprotein: ubiquinone oxidoreductases. Biochim Biophys Acta 1797: 1910-6.
    • (2010) Biochim Biophys Acta , vol.1797 , pp. 1910-1916
    • Watmough, N.J.1    Frerman, F.E.2
  • 13
    • 77952541558 scopus 로고    scopus 로고
    • The sites and topology of mitochondrial superoxide production
    • Brand MD. 2010. The sites and topology of mitochondrial superoxide production. Exp Gerontol 45: 466-72.
    • (2010) Exp Gerontol , vol.45 , pp. 466-472
    • Brand, M.D.1
  • 14
    • 10344261154 scopus 로고    scopus 로고
    • Mitochondrial superoxide and aging: uncoupling-protein activity and superoxide production
    • Brand MD, Buckingham JA, Esteves TC, Green K, et al. 2004. Mitochondrial superoxide and aging: uncoupling-protein activity and superoxide production. Biochem Soc Symp 71: 203-13.
    • (2004) Biochem Soc Symp , vol.71 , pp. 203-213
    • Brand, M.D.1    Buckingham, J.A.2    Esteves, T.C.3    Green, K.4
  • 15
    • 58249093939 scopus 로고    scopus 로고
    • How mitochondria produce reactive oxygen species
    • Murphy MP. 2009. How mitochondria produce reactive oxygen species. Biochem J 417: 1-13.
    • (2009) Biochem J , vol.417 , pp. 1-13
    • Murphy, M.P.1
  • 16
    • 84857687489 scopus 로고    scopus 로고
    • Linking mitochondrial bioenergetics to insulin resistance via redox biology
    • Fisher-Wellman KH, Neufer PD. 2012. Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends Endocrinol Metab 23: 142-53.
    • (2012) Trends Endocrinol Metab , vol.23 , pp. 142-153
    • Fisher-Wellman, K.H.1    Neufer, P.D.2
  • 19
    • 0023665017 scopus 로고
    • Fatty acid oxidation in rat brain is limited by the low activity of 3-ketoacyl-coenzyme A thiolase
    • Yang SY, He XY, Schulz H. 1987. Fatty acid oxidation in rat brain is limited by the low activity of 3-ketoacyl-coenzyme A thiolase. J Biol Chem 262: 13027-32.
    • (1987) J Biol Chem , vol.262 , pp. 13027-13032
    • Yang, S.Y.1    He, X.Y.2    Schulz, H.3
  • 20
    • 84903275218 scopus 로고    scopus 로고
    • Reconsidering ideas regarding the evolution of peroxisomes: the case for a mitochondrial connection
    • in press. DOI: 10.1007/s00018-013-1507-x
    • Speijer D. 2014. Reconsidering ideas regarding the evolution of peroxisomes: the case for a mitochondrial connection. Cell Mol Life Sci, in press. DOI: 10.1007/s00018-013-1507-x
    • (2014) Cell Mol Life Sci
    • Speijer, D.1
  • 21
    • 84885217983 scopus 로고    scopus 로고
    • Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts
    • Barja G. 2013. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal 19: 1420-45.
    • (2013) Antioxid Redox Signal , vol.19 , pp. 1420-1445
    • Barja, G.1
  • 22
    • 11144263646 scopus 로고    scopus 로고
    • P/O ratios of mitochondrial oxidative phosphorylation
    • Hinkle PC. 2005. P/O ratios of mitochondrial oxidative phosphorylation. Biochim Biophys Acta 1706: 1-11.
    • (2005) Biochim Biophys Acta , vol.1706 , pp. 1-11
    • Hinkle, P.C.1
  • 23
    • 35848932285 scopus 로고    scopus 로고
    • Mitochondria and peroxisomes: are the 'big brother' and the 'little sister' closer than assumed
    • Schrader M, Yoon Y. 2007. Mitochondria and peroxisomes: are the 'big brother' and the 'little sister' closer than assumed? BioEssays 29: 1105-14.
    • (2007) BioEssays , vol.29 , pp. 1105-1114
    • Schrader, M.1    Yoon, Y.2
  • 26
    • 78149429951 scopus 로고    scopus 로고
    • A stress-responsive system for mitochondrial protein degradation
    • Heo JM, Livnat-Levanon N, Taylor EB, Jones KT, et al. 2010. A stress-responsive system for mitochondrial protein degradation. Mol Cell 40: 465-80.
    • (2010) Mol Cell , vol.40 , pp. 465-480
    • Heo, J.M.1    Livnat-Levanon, N.2    Taylor, E.B.3    Jones, K.T.4
  • 27
    • 80053352130 scopus 로고    scopus 로고
    • Mitochondrial quality control by the ubiquitin-proteasome system
    • Taylor EB, Rutter J. 2011. Mitochondrial quality control by the ubiquitin-proteasome system. Biochem Soc Trans 39: 1509-13.
    • (2011) Biochem Soc Trans , vol.39 , pp. 1509-1513
    • Taylor, E.B.1    Rutter, J.2
  • 28
    • 38349023008 scopus 로고    scopus 로고
    • Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers
    • Neuspiel M, Schauss AC, Braschi E, Zunino R, et al. 2008. Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr Biol 18: 102-8.
    • (2008) Curr Biol , vol.18 , pp. 102-108
    • Neuspiel, M.1    Schauss, A.C.2    Braschi, E.3    Zunino, R.4
  • 29
    • 84884853475 scopus 로고    scopus 로고
    • Peroxisomes contribute to the acylcarnitine production when the carnitine shuttle is deficient
    • Violante S, Ijlst L, Te Brinke H, Koster J, et al. 2013. Peroxisomes contribute to the acylcarnitine production when the carnitine shuttle is deficient. Biochim Biophys Acta 1831: 1467-74.
    • (2013) Biochim Biophys Acta , vol.1831 , pp. 1467-1474
    • Violante, S.1    Ijlst, L.2    Te Brinke, H.3    Koster, J.4
  • 31
    • 33646251863 scopus 로고    scopus 로고
    • Synergy of fatty acid and reactive alkenal activation of proton conductance through uncoupling protein 1 in mitochondria
    • Esteves TC, Parker N, Brand MD. 2006. Synergy of fatty acid and reactive alkenal activation of proton conductance through uncoupling protein 1 in mitochondria. Biochem J 395: 619-28.
    • (2006) Biochem J , vol.395 , pp. 619-628
    • Esteves, T.C.1    Parker, N.2    Brand, M.D.3
  • 32
    • 0033938076 scopus 로고    scopus 로고
    • l-Propionyl-carnitine as superoxide scavenger, antioxidant, and DNA cleavage protector
    • Vanella A, Russo A, Acquaviva R, Campisi A, et al. 2000. l-Propionyl-carnitine as superoxide scavenger, antioxidant, and DNA cleavage protector. Cell Biol Toxicol 16: 99-104.
    • (2000) Cell Biol Toxicol , vol.16 , pp. 99-104
    • Vanella, A.1    Russo, A.2    Acquaviva, R.3    Campisi, A.4
  • 33
    • 30544455318 scopus 로고    scopus 로고
    • Antioxidant and antiradical activities of l-carnitine
    • Gulcin I. 2006. Antioxidant and antiradical activities of l-carnitine. Life Sci 78: 803-11.
    • (2006) Life Sci , vol.78 , pp. 803-811
    • Gulcin, I.1
  • 34
    • 77953603769 scopus 로고    scopus 로고
    • Enzymology of the carnitine biosynthesis pathway
    • Strijbis K, Vaz FM, Distel B. 2010. Enzymology of the carnitine biosynthesis pathway. IUBMB Life 62: 357-62.
    • (2010) IUBMB Life , vol.62 , pp. 357-362
    • Strijbis, K.1    Vaz, F.M.2    Distel, B.3
  • 35
    • 33846407653 scopus 로고    scopus 로고
    • The AAA+ protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization
    • He J, Mao CC, Reyes A, Sembongi H, et al. 2007. The AAA+ protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization. J Cell Biol 176: 141-6.
    • (2007) J Cell Biol , vol.176 , pp. 141-146
    • He, J.1    Mao, C.C.2    Reyes, A.3    Sembongi, H.4
  • 36
    • 84893317772 scopus 로고    scopus 로고
    • Replication factors transiently associate with mtDNA at the mitochondrial inner membrane to facilitate replication
    • Rajala N, Gerhold JM, Martinsson P, Klymov A, et al. 2014. Replication factors transiently associate with mtDNA at the mitochondrial inner membrane to facilitate replication. Nucleic Acids Res 42: 952-67.
    • (2014) Nucleic Acids Res , vol.42 , pp. 952-967
    • Rajala, N.1    Gerhold, J.M.2    Martinsson, P.3    Klymov, A.4
  • 37
    • 84863863145 scopus 로고    scopus 로고
    • The free-radical theory of ageing - older, wiser and still alive
    • Kirkwood TB, Kowald A. 2012. The free-radical theory of ageing - older, wiser and still alive. BioEssays 34: 692-700.
    • (2012) BioEssays , vol.34 , pp. 692-700
    • Kirkwood, T.B.1    Kowald, A.2
  • 38
    • 0036432303 scopus 로고    scopus 로고
    • Carnitine membrane transporter deficiency: a long-term follow up and OCTN2 mutation in the first documented case of primary carnitine deficiency
    • Cederbaum SD, Koo-McCoy S, Tein I, Hsu BY, et al. 2002. Carnitine membrane transporter deficiency: a long-term follow up and OCTN2 mutation in the first documented case of primary carnitine deficiency. Mol Genet Metab 77: 195-201.
    • (2002) Mol Genet Metab , vol.77 , pp. 195-201
    • Cederbaum, S.D.1    Koo-McCoy, S.2    Tein, I.3    Hsu, B.Y.4
  • 39
    • 81855201915 scopus 로고    scopus 로고
    • The mitochondrial carnitine/acylcarnitine carrier: function, structure and physiopathology
    • Indiveri C, Iacobazzi V, Tonazzi A, Giangregorio N, et al. 2011. The mitochondrial carnitine/acylcarnitine carrier: function, structure and physiopathology. Mol Aspects Med 32: 223-33.
    • (2011) Mol Aspects Med , vol.32 , pp. 223-233
    • Indiveri, C.1    Iacobazzi, V.2    Tonazzi, A.3    Giangregorio, N.4
  • 40
    • 67650561215 scopus 로고    scopus 로고
    • A novel member of solute carrier family 25 (SLC25A42) is a transporter of coenzyme A and adenosine 3′,5′-diphosphate in human mitochondria
    • Fiermonte G, Paradies E, Todisco S, Marobbio CM, et al. 2009. A novel member of solute carrier family 25 (SLC25A42) is a transporter of coenzyme A and adenosine 3′, 5′-diphosphate in human mitochondria. J Biol Chem 284: 18152-9.
    • (2009) J Biol Chem , vol.284 , pp. 18152-18159
    • Fiermonte, G.1    Paradies, E.2    Todisco, S.3    Marobbio, C.M.4
  • 41
    • 0027196852 scopus 로고
    • Adrenoleukodystrophy gene: unexpected homology to a protein involved in peroxisome biogenesis
    • Aubourg P, Mosser J, Douar AM, Sarde CO, et al. 1993. Adrenoleukodystrophy gene: unexpected homology to a protein involved in peroxisome biogenesis. Biochimie 75: 293-302.
    • (1993) Biochimie , vol.75 , pp. 293-302
    • Aubourg, P.1    Mosser, J.2    Douar, A.M.3    Sarde, C.O.4
  • 42
    • 0026001140 scopus 로고
    • Characterization of the unidirectional transport of carnitine catalyzed by the reconstituted carnitine carrier from rat liver mitochondria
    • Indiveri C, Tonazzi A, Palmieri F. 1991. Characterization of the unidirectional transport of carnitine catalyzed by the reconstituted carnitine carrier from rat liver mitochondria. Biochim Biophys Acta 1069: 110-6.
    • (1991) Biochim Biophys Acta , vol.1069 , pp. 110-116
    • Indiveri, C.1    Tonazzi, A.2    Palmieri, F.3
  • 43
    • 0028157695 scopus 로고
    • The reconstituted carnitine carrier from rat liver mitochondria: evidence for a transport mechanism different from that of the other mitochondrial translocators
    • Indiveri C, Tonazzi A, Palmieri F. 1994. The reconstituted carnitine carrier from rat liver mitochondria: evidence for a transport mechanism different from that of the other mitochondrial translocators. Biochim Biophys Acta 1189: 65-73.
    • (1994) Biochim Biophys Acta , vol.1189 , pp. 65-73
    • Indiveri, C.1    Tonazzi, A.2    Palmieri, F.3
  • 45
    • 0017927437 scopus 로고
    • The identification of the component in the inner membrane of brown adipose tissue mitochondria responsible for regulating energy dissipation
    • Nicholls DG, Bernson VS, Heaton GM. 1978. The identification of the component in the inner membrane of brown adipose tissue mitochondria responsible for regulating energy dissipation. Exp Suppl 32: 89-93.
    • (1978) Exp Suppl , vol.32 , pp. 89-93
    • Nicholls, D.G.1    Bernson, V.S.2    Heaton, G.M.3
  • 46
    • 77952559481 scopus 로고    scopus 로고
    • The on-off switches of the mitochondrial uncoupling proteins
    • Azzu V, Brand MD. 2010. The on-off switches of the mitochondrial uncoupling proteins. Trends Biochem Sci 35: 298-307.
    • (2010) Trends Biochem Sci , vol.35 , pp. 298-307
    • Azzu, V.1    Brand, M.D.2
  • 47
  • 48
    • 77955982212 scopus 로고    scopus 로고
    • Coupling of proton and substrate translocation in the transport cycle of mitochondrial carriers
    • Kunji ER, Robinson AJ. 2010. Coupling of proton and substrate translocation in the transport cycle of mitochondrial carriers. Curr Opin Struct Biol 20: 440-7.
    • (2010) Curr Opin Struct Biol , vol.20 , pp. 440-447
    • Kunji, E.R.1    Robinson, A.J.2
  • 49
    • 84867564026 scopus 로고    scopus 로고
    • Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria
    • Fedorenko A, Lishko PV, Kirichok Y. 2012. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151: 400-13.
    • (2012) Cell , vol.151 , pp. 400-413
    • Fedorenko, A.1    Lishko, P.V.2    Kirichok, Y.3
  • 50
    • 78449299224 scopus 로고    scopus 로고
    • Mosaic origin of the mitochondrial proteome
    • Szklarczyk R, Huynen MA. 2010. Mosaic origin of the mitochondrial proteome. Proteomics 10: 4012-24.
    • (2010) Proteomics , vol.10 , pp. 4012-4024
    • Szklarczyk, R.1    Huynen, M.A.2
  • 51
    • 56349123721 scopus 로고    scopus 로고
    • Evolutionary history of the UCP gene family: gene duplication and selection
    • Hughes J, Criscuolo F. 2008. Evolutionary history of the UCP gene family: gene duplication and selection. BMC Evol Biol 8: 306.
    • (2008) BMC Evol Biol , vol.8 , pp. 306
    • Hughes, J.1    Criscuolo, F.2
  • 52
    • 0034650763 scopus 로고    scopus 로고
    • The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP
    • Ricquier D, Bouillaud F. 2000. The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J 345: 161-79.
    • (2000) Biochem J , vol.345 , pp. 161-179
    • Ricquier, D.1    Bouillaud, F.2
  • 53
    • 84878639728 scopus 로고    scopus 로고
    • Brown adipose tissue in adult humans: a metabolic renaissance
    • Lee P, Swarbrick MM, Ho KK. 2013. Brown adipose tissue in adult humans: a metabolic renaissance. Endocr Rev 34: 413-38.
    • (2013) Endocr Rev , vol.34 , pp. 413-438
    • Lee, P.1    Swarbrick, M.M.2    Ho, K.K.3
  • 54
    • 84879358003 scopus 로고    scopus 로고
    • Human neuronal uncoupling proteins 4 and 5 (UCP4 and UCP5): structural properties, regulation, and physiological role in protection against oxidative stress and mitochondrial dysfunction
    • Ramsden DB, Ho PW, Ho JW, Liu HF, et al. 2012. Human neuronal uncoupling proteins 4 and 5 (UCP4 and UCP5): structural properties, regulation, and physiological role in protection against oxidative stress and mitochondrial dysfunction. Brain Behav 2: 468-78.
    • (2012) Brain Behav , vol.2 , pp. 468-478
    • Ramsden, D.B.1    Ho, P.W.2    Ho, J.W.3    Liu, H.F.4
  • 55
    • 4043147798 scopus 로고    scopus 로고
    • Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins
    • Brand MD, Affourtit C, Esteves TC, Green K, et al. 2004. Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 37: 755-67.
    • (2004) Free Radic Biol Med , vol.37 , pp. 755-767
    • Brand, M.D.1    Affourtit, C.2    Esteves, T.C.3    Green, K.4
  • 56
    • 0035852755 scopus 로고    scopus 로고
    • Uncoupling proteins 2 and 3 are highly active H(+) transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone)
    • Echtay KS, Winkler E, Frischmuth K, Klingenberg M. 2001. Uncoupling proteins 2 and 3 are highly active H(+) transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone). Proc Natl Acad Sci USA 98: 1416-21.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 1416-1421
    • Echtay, K.S.1    Winkler, E.2    Frischmuth, K.3    Klingenberg, M.4
  • 58
    • 0038419546 scopus 로고    scopus 로고
    • Activating omega-6 polyunsaturated fatty acids and inhibitory purine nucleotides are high affinity ligands for novel mitochondrial uncoupling proteins UCP2 and UCP3
    • Zackova M, Skobisova E, Urbankova E, Jezek P. 2003. Activating omega-6 polyunsaturated fatty acids and inhibitory purine nucleotides are high affinity ligands for novel mitochondrial uncoupling proteins UCP2 and UCP3. J Biol Chem 278: 20761-9.
    • (2003) J Biol Chem , vol.278 , pp. 20761-20769
    • Zackova, M.1    Skobisova, E.2    Urbankova, E.3    Jezek, P.4
  • 59
    • 33947630244 scopus 로고    scopus 로고
    • Polyunsaturated fatty acids activate human uncoupling proteins 1 and 2 in planar lipid bilayers
    • Beck V, Jaburek M, Demina T, Rupprecht A, et al. 2007. Polyunsaturated fatty acids activate human uncoupling proteins 1 and 2 in planar lipid bilayers. FASEB J 21: 1137-44.
    • (2007) FASEB J , vol.21 , pp. 1137-1144
    • Beck, V.1    Jaburek, M.2    Demina, T.3    Rupprecht, A.4
  • 60
    • 33244486764 scopus 로고    scopus 로고
    • Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells
    • Bordone L, Motta MC, Picard F, Robinson A, et al. 2006. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 4: e31.
    • (2006) PLoS Biol , vol.4
    • Bordone, L.1    Motta, M.C.2    Picard, F.3    Robinson, A.4
  • 61
    • 0037088649 scopus 로고    scopus 로고
    • Mechanism for peroxisome proliferator-activated receptor-alpha activator-induced up-regulation of UCP2 mRNA in rodent hepatocytes
    • Nakatani T, Tsuboyama-Kasaoka N, Takahashi M, Miura S, et al. 2002. Mechanism for peroxisome proliferator-activated receptor-alpha activator-induced up-regulation of UCP2 mRNA in rodent hepatocytes. J Biol Chem 277: 9562-9.
    • (2002) J Biol Chem , vol.277 , pp. 9562-9569
    • Nakatani, T.1    Tsuboyama-Kasaoka, N.2    Takahashi, M.3    Miura, S.4
  • 62
    • 84863522631 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor alpha induction of uncoupling protein 2 protects against acetaminophen-induced liver toxicity
    • Patterson AD, Shah YM, Matsubara T, Krausz KW, et al. 2012. Peroxisome proliferator-activated receptor alpha induction of uncoupling protein 2 protects against acetaminophen-induced liver toxicity. Hepatology 56: 281-90.
    • (2012) Hepatology , vol.56 , pp. 281-290
    • Patterson, A.D.1    Shah, Y.M.2    Matsubara, T.3    Krausz, K.W.4
  • 63
    • 78249255197 scopus 로고    scopus 로고
    • Ubiquinol (QH(2)) functions as a negative regulator of purine nucleotide inhibition of Acanthamoeba castellanii mitochondrial uncoupling protein
    • Woyda-Ploszczyca A, Jarmuszkiewicz W. 2011. Ubiquinol (QH(2)) functions as a negative regulator of purine nucleotide inhibition of Acanthamoeba castellanii mitochondrial uncoupling protein. Biochim Biophys Acta 1807: 42-52.
    • (2011) Biochim Biophys Acta , vol.1807 , pp. 42-52
    • Woyda-Ploszczyca, A.1    Jarmuszkiewicz, W.2
  • 64
    • 8544273678 scopus 로고    scopus 로고
    • Redox state of endogenous coenzyme q modulates the inhibition of linoleic acid-induced uncoupling by guanosine triphosphate in isolated skeletal muscle mitochondria
    • Jarmuszkiewicz W, Navet R, Alberici LC, Douette P, et al. 2004. Redox state of endogenous coenzyme q modulates the inhibition of linoleic acid-induced uncoupling by guanosine triphosphate in isolated skeletal muscle mitochondria. J Bioenerg Biomembr 36: 493-502.
    • (2004) J Bioenerg Biomembr , vol.36 , pp. 493-502
    • Jarmuszkiewicz, W.1    Navet, R.2    Alberici, L.C.3    Douette, P.4
  • 65
    • 20044382658 scopus 로고    scopus 로고
    • In phosphorylating Acanthamoeba castellanii mitochondria the sensitivity of uncoupling protein activity to GTP depends on the redox state of quinone
    • Jarmuszkiewicz W, Swida A, Czarna M, Antos N, et al. 2005. In phosphorylating Acanthamoeba castellanii mitochondria the sensitivity of uncoupling protein activity to GTP depends on the redox state of quinone. J Bioenerg Biomembr 37: 97-107.
    • (2005) J Bioenerg Biomembr , vol.37 , pp. 97-107
    • Jarmuszkiewicz, W.1    Swida, A.2    Czarna, M.3    Antos, N.4
  • 66
    • 70350708314 scopus 로고    scopus 로고
    • Transcriptional upregulation of mitochondrial uncoupling protein 2 protects against oxidative stress-associated neurogenic hypertension
    • Chan SH, Wu CA, Wu KL, Ho YH, et al. 2009. Transcriptional upregulation of mitochondrial uncoupling protein 2 protects against oxidative stress-associated neurogenic hypertension. Circ Res 105: 886-96.
    • (2009) Circ Res , vol.105 , pp. 886-896
    • Chan, S.H.1    Wu, C.A.2    Wu, K.L.3    Ho, Y.H.4
  • 67
    • 38549120705 scopus 로고    scopus 로고
    • Uncoupling protein-2 accumulates rapidly in the inner mitochondrial membrane during mitochondrial reactive oxygen stress in macrophages
    • Giardina TM, Steer JH, Lo SZ, Joyce DA. 2008. Uncoupling protein-2 accumulates rapidly in the inner mitochondrial membrane during mitochondrial reactive oxygen stress in macrophages. Biochim Biophys Acta 1777: 118-29.
    • (2008) Biochim Biophys Acta , vol.1777 , pp. 118-129
    • Giardina, T.M.1    Steer, J.H.2    Lo, S.Z.3    Joyce, D.A.4
  • 68
    • 79958735550 scopus 로고    scopus 로고
    • Glutathionylation acts as a control switch for uncoupling proteins UCP2 and UCP3
    • Mailloux RJ, Seifert EL, Bouillaud F, Aguer C, et al. 2011. Glutathionylation acts as a control switch for uncoupling proteins UCP2 and UCP3. J Biol Chem 286: 21865-75.
    • (2011) J Biol Chem , vol.286 , pp. 21865-21875
    • Mailloux, R.J.1    Seifert, E.L.2    Bouillaud, F.3    Aguer, C.4
  • 69
    • 80051783174 scopus 로고    scopus 로고
    • Uncoupling proteins and the control of mitochondrial reactive oxygen species production
    • Mailloux RJ, Harper ME. 2011. Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic Biol Med 51: 1106-15.
    • (2011) Free Radic Biol Med , vol.51 , pp. 1106-1115
    • Mailloux, R.J.1    Harper, M.E.2
  • 70
    • 70350020756 scopus 로고    scopus 로고
    • Mitochondrial ATP-sensitive K(+) channels as redox signals to liver mitochondria in response to hypertriglyceridemia
    • Alberici LC, Oliveira HC, Paim BA, Mantello CC, et al. 2009. Mitochondrial ATP-sensitive K(+) channels as redox signals to liver mitochondria in response to hypertriglyceridemia. Free Radic Biol Med 47: 1432-9.
    • (2009) Free Radic Biol Med , vol.47 , pp. 1432-1439
    • Alberici, L.C.1    Oliveira, H.C.2    Paim, B.A.3    Mantello, C.C.4
  • 71
    • 79952311179 scopus 로고    scopus 로고
    • Mitochondrial energy metabolism and redox responses to hypertriglyceridemia
    • Alberici LC, Vercesi AE, Oliveira HC. 2011. Mitochondrial energy metabolism and redox responses to hypertriglyceridemia. J Bioenerg Biomembr 43: 19-23.
    • (2011) J Bioenerg Biomembr , vol.43 , pp. 19-23
    • Alberici, L.C.1    Vercesi, A.E.2    Oliveira, H.C.3
  • 72
    • 0034092716 scopus 로고    scopus 로고
    • CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis
    • Leclercq IA, Farrell GC, Field J, Bell DR, et al. 2000. CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J Clin Invest 105: 1067-75.
    • (2000) J Clin Invest , vol.105 , pp. 1067-1075
    • Leclercq, I.A.1    Farrell, G.C.2    Field, J.3    Bell, D.R.4
  • 73
    • 82555187010 scopus 로고    scopus 로고
    • Energetics and the evolution of human brain size
    • Navarrete A, van Schaik CP, Isler K. 2011. Energetics and the evolution of human brain size. Nature 480: 91-3.
    • (2011) Nature , vol.480 , pp. 91-93
    • Navarrete, A.1    van Schaik, C.P.2    Isler, K.3
  • 74
    • 84858284531 scopus 로고    scopus 로고
    • Brains have a gut feeling about fat storage
    • Speijer D. 2012. Brains have a gut feeling about fat storage. BioEssays 34: 275-6.
    • (2012) BioEssays , vol.34 , pp. 275-276
    • Speijer, D.1
  • 75
    • 33750110683 scopus 로고    scopus 로고
    • Fuel metabolism in starvation
    • Cahill GF Jr. 2006. Fuel metabolism in starvation. Annu Rev Nutr 26: 1-22.
    • (2006) Annu Rev Nutr , vol.26 , pp. 1-22
    • Cahill Jr, G.F.1
  • 77
    • 84864259645 scopus 로고    scopus 로고
    • Neuroscience: the wrap that feeds neurons
    • Rinholm JE, Bergersen LH. 2012. Neuroscience: the wrap that feeds neurons. Nature 487: 435-6.
    • (2012) Nature , vol.487 , pp. 435-436
    • Rinholm, J.E.1    Bergersen, L.H.2
  • 78
    • 84888149337 scopus 로고    scopus 로고
    • Hypoxia and oxygenation induce a metabolic switch between pentose phosphate pathway and glycolysis in glioma stem-like cells
    • Kathagen A, Schulte A, Balcke G, Phillips HS, et al. 2013. Hypoxia and oxygenation induce a metabolic switch between pentose phosphate pathway and glycolysis in glioma stem-like cells. Acta Neuropathol 126: 763-80.
    • (2013) Acta Neuropathol , vol.126 , pp. 763-780
    • Kathagen, A.1    Schulte, A.2    Balcke, G.3    Phillips, H.S.4
  • 79
    • 84878009179 scopus 로고    scopus 로고
    • Sites of superoxide and hydrogen peroxide production during fatty acid oxidation in rat skeletal muscle mitochondria
    • Perevoshchikova IV, Quinlan CL, Orr AL, Gerencser AA, et al. 2013. Sites of superoxide and hydrogen peroxide production during fatty acid oxidation in rat skeletal muscle mitochondria. Free Radic Biol Med 61C: 298-309.
    • (2013) Free Radic Biol Med , vol.61 C , pp. 298-309
    • Perevoshchikova, I.V.1    Quinlan, C.L.2    Orr, A.L.3    Gerencser, A.A.4
  • 80
    • 84879430920 scopus 로고    scopus 로고
    • Sites of reactive oxygen species generation by mitochondria oxidizing different substrates
    • Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Orr AL, et al. 2013. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol 1: 304-12.
    • (2013) Redox Biol , vol.1 , pp. 304-312
    • Quinlan, C.L.1    Perevoshchikova, I.V.2    Hey-Mogensen, M.3    Orr, A.L.4
  • 82
    • 84878003949 scopus 로고    scopus 로고
    • The transcription factor Nrf2 promotes survival by enhancing the expression of uncoupling protein 3 under conditions of oxidative stress
    • Anedda A, Lopez-Bernardo E, Acosta-Iborra B, Saadeh Suleiman M, et al. 2013. The transcription factor Nrf2 promotes survival by enhancing the expression of uncoupling protein 3 under conditions of oxidative stress. Free Radic Biol Med 61C: 395-407.
    • (2013) Free Radic Biol Med , vol.61 C , pp. 395-407
    • Anedda, A.1    Lopez-Bernardo, E.2    Acosta-Iborra, B.3    Saadeh Suleiman, M.4
  • 83
    • 58049127212 scopus 로고    scopus 로고
    • Upregulation of uncoupling protein-3 in skeletal muscle during exercise: a potential antioxidant function
    • Jiang N, Zhang G, Bo H, Qu J, et al. 2009. Upregulation of uncoupling protein-3 in skeletal muscle during exercise: a potential antioxidant function. Free Radic Biol Med 46: 138-45.
    • (2009) Free Radic Biol Med , vol.46 , pp. 138-145
    • Jiang, N.1    Zhang, G.2    Bo, H.3    Qu, J.4
  • 84
    • 77953812609 scopus 로고    scopus 로고
    • Mitochondrial respiratory chain super-complex I-III in physiology and pathology
    • Lenaz G, Baracca A, Barbero G, Bergamini C, et al. 2010. Mitochondrial respiratory chain super-complex I-III in physiology and pathology. Biochim Biophys Acta 1797: 633-40.
    • (2010) Biochim Biophys Acta , vol.1797 , pp. 633-640
    • Lenaz, G.1    Baracca, A.2    Barbero, G.3    Bergamini, C.4
  • 85
    • 84880387219 scopus 로고    scopus 로고
    • A stabilizing factor for mitochondrial respiratory supercomplex assembly regulates energy metabolism in muscle
    • Ikeda K, Shiba S, Horie-Inoue K, Shimokata K, et al. 2013. A stabilizing factor for mitochondrial respiratory supercomplex assembly regulates energy metabolism in muscle. Nat Commun 4: 2147.
    • (2013) Nat Commun , vol.4 , pp. 2147
    • Ikeda, K.1    Shiba, S.2    Horie-Inoue, K.3    Shimokata, K.4
  • 86
    • 84881367196 scopus 로고    scopus 로고
    • I function, therefore I am: overcoming skepticism about mitochondrial supercomplexes
    • Barrientos A, Ugalde C. 2013. I function, therefore I am: overcoming skepticism about mitochondrial supercomplexes. Cell Metab 18: 147-9.
    • (2013) Cell Metab , vol.18 , pp. 147-149
    • Barrientos, A.1    Ugalde, C.2
  • 87
    • 84879617853 scopus 로고    scopus 로고
    • Supercomplex assembly determines electron flux in the mitochondrial electron transport chain
    • Lapuente-Brun E, Moreno-Loshuertos R, Acin-Perez R, Latorre-Pellicer A, et al. 2013. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340: 1567-70.
    • (2013) Science , vol.340 , pp. 1567-1570
    • Lapuente-Brun, E.1    Moreno-Loshuertos, R.2    Acin-Perez, R.3    Latorre-Pellicer, A.4
  • 88
    • 84858057118 scopus 로고    scopus 로고
    • Mitochondrial complex I plays an essential role in human respirasome assembly
    • Moreno-Lastres D, Fontanesi F, Garcia-Consuegra I, Martin MA, et al. 2012. Mitochondrial complex I plays an essential role in human respirasome assembly. Cell Metab 15: 324-35.
    • (2012) Cell Metab , vol.15 , pp. 324-335
    • Moreno-Lastres, D.1    Fontanesi, F.2    Garcia-Consuegra, I.3    Martin, M.A.4
  • 89
    • 84866616460 scopus 로고    scopus 로고
    • Age-related decline in mitochondrial bioenergetics: does supercomplex destabilization determine lower oxidative capacity and higher superoxide production
    • Gomez LA, Hagen TM. 2012. Age-related decline in mitochondrial bioenergetics: does supercomplex destabilization determine lower oxidative capacity and higher superoxide production? Semin Cell Dev Biol 23: 758-67.
    • (2012) Semin Cell Dev Biol , vol.23 , pp. 758-767
    • Gomez, L.A.1    Hagen, T.M.2
  • 90
    • 84864024064 scopus 로고    scopus 로고
    • Sealing the mitochondrial respirasome
    • Winge DR. 2012. Sealing the mitochondrial respirasome. Mol Cell Biol 32: 2647-52.
    • (2012) Mol Cell Biol , vol.32 , pp. 2647-2652
    • Winge, D.R.1
  • 91
    • 0035957755 scopus 로고    scopus 로고
    • Mitochondrial uncoupling proteins and phylogenesis - UCP4 as the ancestral uncoupling protein
    • Hanak P, Jezek P. 2001. Mitochondrial uncoupling proteins and phylogenesis - UCP4 as the ancestral uncoupling protein. FEBS Lett 495: 137-41.
    • (2001) FEBS Lett , vol.495 , pp. 137-141
    • Hanak, P.1    Jezek, P.2
  • 92
    • 79961168437 scopus 로고    scopus 로고
    • Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching
    • Berardi MJ, Shih WM, Harrison SC, Chou JJ. 2011. Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature 476: 109-13.
    • (2011) Nature , vol.476 , pp. 109-113
    • Berardi, M.J.1    Shih, W.M.2    Harrison, S.C.3    Chou, J.J.4
  • 93
    • 0033045528 scopus 로고    scopus 로고
    • The evolution of a mechanism of cell suicide
    • Blackstone NW, Green DR. 1999. The evolution of a mechanism of cell suicide. BioEssays 21: 84-8.
    • (1999) BioEssays , vol.21 , pp. 84-88
    • Blackstone, N.W.1    Green, D.R.2
  • 94
    • 33644783626 scopus 로고    scopus 로고
    • Introns and the origin of nucleus-cytosol compartmentalization
    • Martin W, Koonin EV. 2006. Introns and the origin of nucleus-cytosol compartmentalization. Nature 440: 41-5.
    • (2006) Nature , vol.440 , pp. 41-45
    • Martin, W.1    Koonin, E.V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.