메뉴 건너뛰기




Volumn 15, Issue 1, 2012, Pages 8-24

Positive solutions for a semipositone fractional boundary value problem with a forcing term

Author keywords

Cone; Fractional boundary value problems; Positive solutions; Semipositone

Indexed keywords


EID: 84860461303     PISSN: 13110454     EISSN: 13142444     Source Type: Journal    
DOI: 10.2478/s13540-012-0002-7     Document Type: Article
Times cited : (33)

References (23)
  • 1
    • 77954144417 scopus 로고    scopus 로고
    • Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations
    • R.P. Agarwal, D. O'Regan, and S. Stanek, Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations. J. Math. Anal. Appl. 371 (2010), 57-68.
    • (2010) J. Math. Anal. Appl. , vol.371 , pp. 57-68
    • Agarwal, R.P.1    O'regan, D.2    Stanek, S.3
  • 2
    • 79960994576 scopus 로고    scopus 로고
    • Some boundary value problems of fractional differential equations and inclusions
    • B. Ahmad, J.J. Nieto, and J. Pimentel, Some boundary value problems of fractional differential equations and inclusions. Comput. Math. Appl. 62 (2011), 1238-1250.
    • (2011) Comput. Math. Appl. , vol.62 , pp. 1238-1250
    • Ahmad, B.1    Nieto, J.J.2    Pimentel, J.3
  • 3
    • 77955713929 scopus 로고    scopus 로고
    • On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order
    • B. Ahmad and S. Sivasundaram, On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order. Appl. Math. Comput. 217 (2010), 480-487.
    • (2010) Appl. Math. Comput. , vol.217 , pp. 480-487
    • Ahmad, B.1    Sivasundaram, S.2
  • 6
    • 25144460994 scopus 로고    scopus 로고
    • Positive solutions for boundary value problem of nonlinear fractional differential equation
    • DOI 10.1016/j.jmaa.2005.02.052, PII S0022247X05001733
    • Z. Bai and H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equations. J. Math. Anal. Appl. 311 (2005), 495-505. (Pubitemid 41350217)
    • (2005) Journal of Mathematical Analysis and Applications , vol.311 , Issue.2 , pp. 495-505
    • Bai, Z.1    Lu, H.2
  • 7
    • 70249121999 scopus 로고    scopus 로고
    • Existence of periodic solution for a nonlinear fractional differential equation
    • Article ID 324561
    • M. Belmekki, J.J. Nieto, and R. Rodríguez-López, Existence of periodic solution for a nonlinear fractional differential equation. Boundary Value Problems 2009, Article ID 324561, 18 pages.
    • (2009) Boundary Value Problems , pp. 18
    • Belmekki, M.1    Nieto, J.J.2    Rodríguez-López, R.3
  • 8
    • 77953135670 scopus 로고    scopus 로고
    • Nontrivial solutions for a nonlinear multipoint boundary value problem of fractional order
    • M. El-Shahed and J. J. Nieto, Nontrivial solutions for a nonlinear multipoint boundary value problem of fractional order. Comput. Math. Appl. 59 (2010), 3438-3443.
    • (2010) Comput. Math. Appl. , vol.59 , pp. 3438-3443
    • El-Shahed, M.1    Nieto, J.J.2
  • 9
    • 77953688007 scopus 로고    scopus 로고
    • Existence of a positive solution to a class of fractional differential equations
    • C. S. Goodrich, Existence of a positive solution to a class of fractional differential equations. Appl. Math. Lett. 23 (2010), 1050-1055.
    • (2010) Appl. Math. Lett. , vol.23 , pp. 1050-1055
    • Goodrich, C.S.1
  • 10
    • 67349158007 scopus 로고    scopus 로고
    • Positive solutions for third order semipositone boundary value problems
    • J. R. Graef and L. Kong, Positive solutions for third order semipositone boundary value problems. Appl. Math. Lett. 22 (2009), 1154-1160.
    • (2009) Appl. Math. Lett. , vol.22 , pp. 1154-1160
    • Graef, J.R.1    Kong, L.2
  • 13
    • 70449526839 scopus 로고    scopus 로고
    • An approach via fractional analysis to non-linearity induced by coarse-graining in space
    • G. Jumarie, An approach via fractional analysis to non-linearity induced by coarse-graining in space. Nonlinear Anal.: Real World Appl. 11 (2010), 535-546.
    • (2010) Nonlinear Anal.: Real World Appl. , vol.11 , pp. 535-546
    • Jumarie, G.1
  • 15
    • 33645026223 scopus 로고    scopus 로고
    • Multiple positive solutions of semi-positone sturm-liouville boundary value problems
    • DOI 10.1112/S0024609306018327
    • K. Q. Lan, Multiple positive solutions of semi-positone Sturm-Liouville boundary value problems. Bull. London Math. Soc. 38 (2006), 283-293. (Pubitemid 43417648)
    • (2006) Bulletin of the London Mathematical Society , vol.38 , Issue.2 , pp. 283-293
    • Lan, K.Q.1
  • 16
    • 80051653285 scopus 로고    scopus 로고
    • Professor Rudolf Gorenflo and his contribution to fractional calculus
    • DOI: 10.2478/s13540-011-0002-z
    • Y. Luchko, F. Mainardi, and S. Rogosin, Professor Rudolf Gorenflo and his contribution to fractional calculus. Fract. Calc. Appl. Anal. 14, No 1 (2011), 3-18; DOI: 10.2478/s13540-011-0002-z, http://www.springerlink.com/content/1311- 0454/14/1/
    • (2011) Fract. Calc. Appl. Anal. , vol.14 , Issue.1 , pp. 3-18
    • Luchko, Y.1    Mainardi, F.2    Rogosin, S.3
  • 17
    • 0042914993 scopus 로고    scopus 로고
    • Existence of positive solutions for superlinear semipositone m-point boundary-value problems
    • DOI 10.1017/S0013091502000391
    • R. Ma, Existence of positive solutions for superlinear semipositone mpoint boundary value problems. Proc. Edinburgh Math. Soc. 46 (2003), 279-292. (Pubitemid 36913940)
    • (2003) Proceedings of the Edinburgh Mathematical Society , vol.46 , Issue.2 , pp. 279-292
    • Ma, R.1
  • 18
    • 77955429536 scopus 로고    scopus 로고
    • Maximum principles for fractional differential equations derived from Mittag-Leffler functions
    • J. J. Nieto, Maximum principles for fractional differential equations derived from Mittag-Leffler functions. Appl. Math. Letters 23 (2010), 1248-1251.
    • (2010) Appl. Math. Letters , vol.23 , pp. 1248-1251
    • Nieto, J.J.1
  • 20
    • 80051640119 scopus 로고    scopus 로고
    • Fractional derivatives in spaces of generalized functions
    • DOI: 10.2478/s13540-011-0009-5
    • M. Stojanovic, Fractional derivatives in spaces of generalized functions, Fract. Calc. Appl. Anal. 14, No 1 (2011), 125-137; DOI: 10.2478/s13540-011- 0009-5, http://www.springerlink.com/content/1311-0454/14/1/
    • (2011) Fract. Calc. Appl. Anal. , vol.14 , Issue.1 , pp. 125-137
    • Stojanovic, M.1
  • 21
    • 77956170247 scopus 로고    scopus 로고
    • Periodic boundary value problems for fractional differential equations involving a Riemann-Liouville fractional derivative
    • Z. Wei, W. Dong, and J. Che, Periodic boundary value problems for fractional differential equations involving a Riemann-Liouville fractional derivative. Nonlinear Anal. 73 (2010), 3232-3238.
    • (2010) Nonlinear Anal. , vol.73 , pp. 3232-3238
    • Wei, Z.1    Dong, W.2    Che, J.3
  • 22
    • 34848878604 scopus 로고    scopus 로고
    • Positive solutions of nonresonance semipositone singular Dirichlet boundary value problems
    • DOI 10.1016/j.na.2006.10.034, PII S0362546X06006699
    • X. Zhang, L. Liu, and Y. Wu, Positive solutions of nonresonance semipositone singular Dirichlet boundary value problems. Nonlinear Anal. 68 (2008), 97-108. (Pubitemid 47505281)
    • (2008) Nonlinear Analysis, Theory, Methods and Applications , vol.68 , Issue.1 , pp. 97-108
    • Zhang, X.1    Liu, L.2    Wu, Y.3
  • 23
    • 79952164586 scopus 로고    scopus 로고
    • Positive solutions for multipoint boundary value problem of fractional differential equations
    • Article ID 601492
    • W. Zhong, Positive solutions for multipoint boundary value problem of fractional differential equations. Abstract Appl. Anal. (2010), Article ID 601492, 15 pages.
    • (2010) Abstract Appl. Anal. , pp. 15
    • Zhong, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.