메뉴 건너뛰기




Volumn 37, Issue 6, 2013, Pages 4245-4252

A new formula for fractional integrals of Chebyshev polynomials: Application for solving multi-term fractional differential equations

Author keywords

Chebyshev Gauss quadrature; Multi term FDEs; Riemann Liouville sense; Shifted Chebyshev polynomials; Tau method

Indexed keywords

CHEBYSHEV-GAUSS QUADRATURE; MULTI-TERM FDES; RIEMANN-LIOUVILLE SENSE; SHIFTED CHEBYSHEV POLYNOMIALS; TAU METHOD;

EID: 84872609098     PISSN: 0307904X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apm.2012.08.022     Document Type: Article
Times cited : (110)

References (34)
  • 4
    • 77957308442 scopus 로고    scopus 로고
    • A constant enclosure method for validating existence and uniqueness of the solution of an initial value problem for a fractional differential equation
    • Amairi M., Aoun M., Najar S., Abdelkrim M.N. A constant enclosure method for validating existence and uniqueness of the solution of an initial value problem for a fractional differential equation. Appl. Math. Comput. 2010, 217:2162-2168.
    • (2010) Appl. Math. Comput. , vol.217 , pp. 2162-2168
    • Amairi, M.1    Aoun, M.2    Najar, S.3    Abdelkrim, M.N.4
  • 5
    • 77950188013 scopus 로고    scopus 로고
    • Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations
    • Deng J., Ma L. Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations. Appl. Math. Lett. 2010, 23:676-680.
    • (2010) Appl. Math. Lett. , vol.23 , pp. 676-680
    • Deng, J.1    Ma, L.2
  • 6
    • 3042709180 scopus 로고    scopus 로고
    • Multi-order fractional differential equations and their numerical solutions
    • Diethelm K., Ford N.J. Multi-order fractional differential equations and their numerical solutions. Appl. Math. Comput. 2004, 154:621-640.
    • (2004) Appl. Math. Comput. , vol.154 , pp. 621-640
    • Diethelm, K.1    Ford, N.J.2
  • 8
    • 84859537689 scopus 로고    scopus 로고
    • Piecewise polynomial collocation for linear boundary value problems of fractional differential equations
    • Pedas A., Tamme E. Piecewise polynomial collocation for linear boundary value problems of fractional differential equations. J. Comput. Appl. Math. 2012, 236:3349-3359.
    • (2012) J. Comput. Appl. Math. , vol.236 , pp. 3349-3359
    • Pedas, A.1    Tamme, E.2
  • 9
    • 83655192025 scopus 로고    scopus 로고
    • A numerical method for solving boundary value problems for fractional differential equations
    • ur Rehman M., Khan R.A. A numerical method for solving boundary value problems for fractional differential equations. Appl. Math. Model. 2012, 36:894-907.
    • (2012) Appl. Math. Model. , vol.36 , pp. 894-907
    • ur Rehman, M.1    Khan, R.A.2
  • 10
    • 79957889333 scopus 로고    scopus 로고
    • The Legendre wavelet method for solving fractional differential equations
    • ur Rehman M., Khan R.A. The Legendre wavelet method for solving fractional differential equations. Commun. Nonlinear Sci. Numer. Simulat. 2011, 16:4163-4173.
    • (2011) Commun. Nonlinear Sci. Numer. Simulat. , vol.16 , pp. 4163-4173
    • ur Rehman, M.1    Khan, R.A.2
  • 12
    • 84862815794 scopus 로고    scopus 로고
    • The second kind Chebyshev wavelet method for solving fractional differential equations
    • Wang Y., Fan Q. The second kind Chebyshev wavelet method for solving fractional differential equations. Appl. Math. Comput. 2012, 10.1016/j.amc.2012.02.022.
    • (2012) Appl. Math. Comput.
    • Wang, Y.1    Fan, Q.2
  • 13
    • 79961168894 scopus 로고    scopus 로고
    • A quadrature tau method for variable coefficients fractional differential equations
    • Bhrawy A.H., Alofi A.S., Ezz-Eldien S.S. A quadrature tau method for variable coefficients fractional differential equations. Appl. Math. Lett. 2011, 24:2146-2152.
    • (2011) Appl. Math. Lett. , vol.24 , pp. 2146-2152
    • Bhrawy, A.H.1    Alofi, A.S.2    Ezz-Eldien, S.S.3
  • 14
    • 84864987975 scopus 로고    scopus 로고
    • A shifted Legendre spectral method for fractional-order multi-point boundary value problems
    • Bhrawy A.H., Alshomrani M. A shifted Legendre spectral method for fractional-order multi-point boundary value problems. Adv. Differ. Equ. 2012, 2012:8.
    • (2012) Adv. Differ. Equ. , vol.2012 , pp. 8
    • Bhrawy, A.H.1    Alshomrani, M.2
  • 15
    • 79960555480 scopus 로고    scopus 로고
    • Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations
    • Doha E.H., Bhrawy A.H., Ezz-Eldien S.S. Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations. Appl. Math. Modell. 2011, 35:5662-5672.
    • (2011) Appl. Math. Modell. , vol.35 , pp. 5662-5672
    • Doha, E.H.1    Bhrawy, A.H.2    Ezz-Eldien, S.S.3
  • 16
    • 74249095517 scopus 로고    scopus 로고
    • A new operational matrix for solving fractional-order differential equations
    • Saadatmandi A., Dehghan M. A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 2010, 59:1326-1336.
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1326-1336
    • Saadatmandi, A.1    Dehghan, M.2
  • 17
    • 80051547022 scopus 로고    scopus 로고
    • Spline collocation methods for linear multi-term fractional differential equations
    • Pedas A., Tamme E. Spline collocation methods for linear multi-term fractional differential equations. J. Comput. Appl. Math. 2011, 236:167-176.
    • (2011) J. Comput. Appl. Math. , vol.236 , pp. 167-176
    • Pedas, A.1    Tamme, E.2
  • 18
    • 84856356825 scopus 로고    scopus 로고
    • Fractional boundary value problems: analysis and numerical methods
    • Ford N.J., Morgado M.L. Fractional boundary value problems: analysis and numerical methods. Fract. Calc. Appl. Anal. 2011, 14:554-567.
    • (2011) Fract. Calc. Appl. Anal. , vol.14 , pp. 554-567
    • Ford, N.J.1    Morgado, M.L.2
  • 19
    • 84861893481 scopus 로고    scopus 로고
    • A new Jacobi operational matrix: an application for solving fractional differential equations
    • Doha E.H., Bhrawy A.H., Ezz-Eldien S.S. A new Jacobi operational matrix: an application for solving fractional differential equations. Appl. Math. Model. 2012, 36:4931-4943.
    • (2012) Appl. Math. Model. , vol.36 , pp. 4931-4943
    • Doha, E.H.1    Bhrawy, A.H.2    Ezz-Eldien, S.S.3
  • 20
    • 0348158242 scopus 로고    scopus 로고
    • Efficient solution of multi-term fractional differential equations using P(EC)mE methods
    • Diethelm K. Efficient solution of multi-term fractional differential equations using P(EC)mE methods. Computing 2003, 71:305-319.
    • (2003) Computing , vol.71 , pp. 305-319
    • Diethelm, K.1
  • 21
    • 0037113861 scopus 로고    scopus 로고
    • The numerical solution of linear multi-term fractional differential equations: systems of equations
    • Edwards J.T., Ford N.J., Simpson A.C. The numerical solution of linear multi-term fractional differential equations: systems of equations. J. Comput. Appl. Math. 2002, 148:401-418.
    • (2002) J. Comput. Appl. Math. , vol.148 , pp. 401-418
    • Edwards, J.T.1    Ford, N.J.2    Simpson, A.C.3
  • 22
    • 9744276851 scopus 로고    scopus 로고
    • Numerical methods for multi-term fractional (arbitrary) orders differential equations
    • El-Mesiry A.E.M., El-Sayed A.M.A., El-Saka H.A.A. Numerical methods for multi-term fractional (arbitrary) orders differential equations. Appl. Math. Comput. 2005, 160:683-699.
    • (2005) Appl. Math. Comput. , vol.160 , pp. 683-699
    • El-Mesiry, A.E.M.1    El-Sayed, A.M.A.2    El-Saka, H.A.A.3
  • 23
    • 67349259080 scopus 로고    scopus 로고
    • Systems-based decomposition schemes for approximate solution of multi-term fractional differential equations
    • Ford N.J., Connoly J.A. Systems-based decomposition schemes for approximate solution of multi-term fractional differential equations. J. Comput. Appl. Math. 2009, 229:382-391.
    • (2009) J. Comput. Appl. Math. , vol.229 , pp. 382-391
    • Ford, N.J.1    Connoly, J.A.2
  • 25
    • 80052270048 scopus 로고    scopus 로고
    • A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order
    • Doha E.H., Bhrawy A.H., Ezz-Eldien S.S. A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput. Math. Appl. 2011, 62:2364-2373.
    • (2011) Comput. Math. Appl. , vol.62 , pp. 2364-2373
    • Doha, E.H.1    Bhrawy, A.H.2    Ezz-Eldien, S.S.3
  • 26
    • 84866046515 scopus 로고    scopus 로고
    • The operational matrix of fractional integration for shifted Chebyshev polynomials
    • Bhrawy A.H., Alofi A.S. The operational matrix of fractional integration for shifted Chebyshev polynomials. Appl. Math. Lett. 2013, 26:25-31.
    • (2013) Appl. Math. Lett. , vol.26 , pp. 25-31
    • Bhrawy, A.H.1    Alofi, A.S.2
  • 27
    • 79953684270 scopus 로고    scopus 로고
    • A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations
    • Esmaeili S., Shamsi M. A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2011, 16:3646-3654.
    • (2011) Commun. Nonlinear Sci. Numer. Simul. , vol.16 , pp. 3646-3654
    • Esmaeili, S.1    Shamsi, M.2
  • 28
    • 0037082968 scopus 로고    scopus 로고
    • On the coefficients of integrated expansions and integrals of ultraspherical polynomials and their applications for solving differential equations
    • Doha E.H. On the coefficients of integrated expansions and integrals of ultraspherical polynomials and their applications for solving differential equations. J. Comput. Appl. Math. 2002, 139:275-298.
    • (2002) J. Comput. Appl. Math. , vol.139 , pp. 275-298
    • Doha, E.H.1
  • 29
    • 0037303151 scopus 로고    scopus 로고
    • Explicit formulae for the coefficients of integrated expansions for Jacobi polynomials and their integrals
    • Doha E.H. Explicit formulae for the coefficients of integrated expansions for Jacobi polynomials and their integrals. Integral Transforms Spec. Funct. 2003, 14:69-86.
    • (2003) Integral Transforms Spec. Funct. , vol.14 , pp. 69-86
    • Doha, E.H.1
  • 30
    • 66049087571 scopus 로고    scopus 로고
    • Jacobi spectral Galerkin method for the integrated forms of fourth-order elliptic differential equations
    • Doha E.H., Bhrawy A.H. Jacobi spectral Galerkin method for the integrated forms of fourth-order elliptic differential equations. Numer. Methods Partial Differ. Equ. 2009, 25:712-739.
    • (2009) Numer. Methods Partial Differ. Equ. , vol.25 , pp. 712-739
    • Doha, E.H.1    Bhrawy, A.H.2
  • 31
    • 78650516844 scopus 로고    scopus 로고
    • Integrals of Bernstein polynomials: an application for the solution of high even-order differential equations
    • Doha E.H., Bhrawy A.H., Saker M.A. Integrals of Bernstein polynomials: an application for the solution of high even-order differential equations. Appl. Math. Lett. 2011, 24:559-565.
    • (2011) Appl. Math. Lett. , vol.24 , pp. 559-565
    • Doha, E.H.1    Bhrawy, A.H.2    Saker, M.A.3
  • 34
    • 34249335010 scopus 로고    scopus 로고
    • Short memory principle and a predictor-corrector approach for fractional differential equations
    • Deng W. Short memory principle and a predictor-corrector approach for fractional differential equations. J. Comput. Appl. Math. 2007, 206:174-188.
    • (2007) J. Comput. Appl. Math. , vol.206 , pp. 174-188
    • Deng, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.