메뉴 건너뛰기




Volumn 58, Issue 9, 2009, Pages 1838-1843

Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions

Author keywords

Coupled system; Existence; Fractional differential equations; Schauder fixed point theorem

Indexed keywords

COUPLED SYSTEM; COUPLED SYSTEMS; EXISTENCE; EXISTENCE RESULTS; FRACTIONAL DIFFERENTIAL EQUATIONS; SCHAUDER FIXED POINT THEOREM;

EID: 70349131961     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2009.07.091     Document Type: Article
Times cited : (492)

References (19)
  • 1
    • 25144460994 scopus 로고    scopus 로고
    • Positive solutions for boundary value problems of nonlinear fractional differential equations
    • Bai Z., and Lü H. Positive solutions for boundary value problems of nonlinear fractional differential equations. J. Math. Anal. Appl. 311 (2005) 495-505
    • (2005) J. Math. Anal. Appl. , vol.311 , pp. 495-505
    • Bai, Z.1    Lü, H.2
  • 2
    • 58049138945 scopus 로고    scopus 로고
    • Some new existence results for fractional differential inclusions with boundary conditions
    • Chang Y.K., and Nieto J.J. Some new existence results for fractional differential inclusions with boundary conditions. Math. Comput. Modelling 49 (2009) 605-609
    • (2009) Math. Comput. Modelling , vol.49 , pp. 605-609
    • Chang, Y.K.1    Nieto, J.J.2
  • 3
    • 36149001762 scopus 로고    scopus 로고
    • Numerical algorithm for the time fractional Fokker-Planck equation
    • Deng W. Numerical algorithm for the time fractional Fokker-Planck equation. J. Comput. Phys. 227 (2007) 1510-1522
    • (2007) J. Comput. Phys. , vol.227 , pp. 1510-1522
    • Deng, W.1
  • 4
    • 44649165019 scopus 로고    scopus 로고
    • Subordination and superordination for univalent solutions for fractional differential equations
    • Ibrahim R.W., and Darus M. Subordination and superordination for univalent solutions for fractional differential equations. J. Math. Anal. Appl. 345 (2008) 871-879
    • (2008) J. Math. Anal. Appl. , vol.345 , pp. 871-879
    • Ibrahim, R.W.1    Darus, M.2
  • 5
    • 35448979806 scopus 로고    scopus 로고
    • Fractional order adaptive high-gain controllers for a class of linear systems
    • Ladaci S., Loiseau J.L., and Charef A. Fractional order adaptive high-gain controllers for a class of linear systems. Commun. Nonlinear Sci. Numer. Simul. 13 (2008) 707-714
    • (2008) Commun. Nonlinear Sci. Numer. Simul. , vol.13 , pp. 707-714
    • Ladaci, S.1    Loiseau, J.L.2    Charef, A.3
  • 6
    • 38049021511 scopus 로고    scopus 로고
    • On the solution of the fractional nonlinear Schrödinger equation
    • Rida S.Z., El-Sherbiny H.M., and Arafa A.A.M. On the solution of the fractional nonlinear Schrödinger equation. Phys. Lett. A 372 (2008) 553-558
    • (2008) Phys. Lett. A , vol.372 , pp. 553-558
    • Rida, S.Z.1    El-Sherbiny, H.M.2    Arafa, A.A.M.3
  • 7
    • 64249167013 scopus 로고    scopus 로고
    • Positive solutions for boundary value problems of N-Dimension nonlinear fractional differential system
    • 15 pages. Article ID 437453
    • Yang A., and Ge W. Positive solutions for boundary value problems of N-Dimension nonlinear fractional differential system. Bound. Value Probl. 2008 (2008) 15 pages. Article ID 437453
    • (2008) Bound. Value Probl. , vol.2008
    • Yang, A.1    Ge, W.2
  • 8
    • 61449105679 scopus 로고    scopus 로고
    • Solutions to boundary-value problems for nonlinear differential equations of fractional order
    • Su X., and Zhang S. Solutions to boundary-value problems for nonlinear differential equations of fractional order. Electron. J. Differential Equations 2009 26 (2009) 115
    • (2009) Electron. J. Differential Equations , vol.2009 , Issue.26 , pp. 115
    • Su, X.1    Zhang, S.2
  • 9
    • 64249112537 scopus 로고    scopus 로고
    • Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions
    • 11 pages. Article ID 708576
    • Ahmad B., and Nieto J.J. Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions. Bound. Value Probl. 2009 (2009) 11 pages. Article ID 708576
    • (2009) Bound. Value Probl. , vol.2009
    • Ahmad, B.1    Nieto, J.J.2
  • 10
    • 68949086378 scopus 로고    scopus 로고
    • Existence of solutions for nonlocal boundary value problems of higher-order nonlinear fractional differential equations
    • 9 pages. Article ID 494720
    • Ahmad B., and Nieto J.J. Existence of solutions for nonlocal boundary value problems of higher-order nonlinear fractional differential equations. Abstr. Appl. Anal. 2009 (2009) 9 pages. Article ID 494720
    • (2009) Abstr. Appl. Anal. , vol.2009
    • Ahmad, B.1    Nieto, J.J.2
  • 11
    • 1242321329 scopus 로고    scopus 로고
    • The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations
    • Bai C., and Fang J. The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations. Appl. Math. Comput. 150 (2004) 611-621
    • (2004) Appl. Math. Comput. , vol.150 , pp. 611-621
    • Bai, C.1    Fang, J.2
  • 12
    • 43049157795 scopus 로고    scopus 로고
    • Numerical solutions of coupled Burgers equations with time and space fractional derivatives
    • Chen Y., and An H. Numerical solutions of coupled Burgers equations with time and space fractional derivatives. Appl. Math. Comput. 200 (2008) 87-95
    • (2008) Appl. Math. Comput. , vol.200 , pp. 87-95
    • Chen, Y.1    An, H.2
  • 13
    • 47849129193 scopus 로고    scopus 로고
    • Mathematical modeling of time fractional reaction-diffusion systems
    • Gafiychuk V., Datsko B., and Meleshko V. Mathematical modeling of time fractional reaction-diffusion systems. J. Comput. Appl. Math. 220 (2008) 215-225
    • (2008) J. Comput. Appl. Math. , vol.220 , pp. 215-225
    • Gafiychuk, V.1    Datsko, B.2    Meleshko, V.3
  • 14
    • 10844262723 scopus 로고    scopus 로고
    • Positive solutions of a system of non-autonomous fractional differential equations
    • Gejji V.D. Positive solutions of a system of non-autonomous fractional differential equations. J. Math. Anal. Appl. 302 (2005) 56-64
    • (2005) J. Math. Anal. Appl. , vol.302 , pp. 56-64
    • Gejji, V.D.1
  • 15
    • 27744589296 scopus 로고    scopus 로고
    • α fractional control of robotic time-delay systems
    • α fractional control of robotic time-delay systems. Mech. Res. Comm. 33 (2006) 269-279
    • (2006) Mech. Res. Comm. , vol.33 , pp. 269-279
    • Lazarević, M.P.1
  • 16
    • 55649098198 scopus 로고    scopus 로고
    • Boundary value problem for a coupled system of nonlinear fractional differential equations
    • Su X. Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 22 (2009) 64-69
    • (2009) Appl. Math. Lett. , vol.22 , pp. 64-69
    • Su, X.1
  • 17
    • 67249147016 scopus 로고    scopus 로고
    • Analysis of the solutions of coupled nonlinear fractional reaction-diffusion equations
    • Gafiychuk V., Datsko B., Meleshko V., and Blackmore D. Analysis of the solutions of coupled nonlinear fractional reaction-diffusion equations. Chaos Solitons Fractals 41 (2009) 1095-1104
    • (2009) Chaos Solitons Fractals , vol.41 , pp. 1095-1104
    • Gafiychuk, V.1    Datsko, B.2    Meleshko, V.3    Blackmore, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.