메뉴 건너뛰기




Volumn 357, Issue , 2014, Pages 112-122

An in-silico study of the regulation of CHO cells glycolysis

Author keywords

CHO cells; Glycolysis; Hypoxic stress; Kinetic metabolic model; Metabolic regulation

Indexed keywords

ADENYLATE KINASE; GLUCOSE 6 PHOSPHATE ISOMERASE; GLUTAMINE; HEXOKINASE; ISOMERASE; LACTATE DEHYDROGENASE; PENTOSE PHOSPHATE; PYRUVATE KINASE;

EID: 84901501190     PISSN: 00225193     EISSN: 10958541     Source Type: Journal    
DOI: 10.1016/j.jtbi.2014.04.035     Document Type: Article
Times cited : (14)

References (44)
  • 1
    • 1542288938 scopus 로고    scopus 로고
    • Global organization of metabolic fluxes in the bacterium Escherichia coli
    • Almaas E., Kovacs B., Vicsek T., Oltvai Z.N., Barabasi A.L. Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 2004, 697:839-843.
    • (2004) Nature , vol.697 , pp. 839-843
    • Almaas, E.1    Kovacs, B.2    Vicsek, T.3    Oltvai, Z.N.4    Barabasi, A.L.5
  • 2
    • 33748300981 scopus 로고    scopus 로고
    • Considerations on the lactate consumption by CHO cells in the presence of galactose
    • Altamirano C., Illanes A., Becerra S., Cairo J.J., Godia F. Considerations on the lactate consumption by CHO cells in the presence of galactose. J. Biotech. 2006, 125:547-556.
    • (2006) J. Biotech. , vol.125 , pp. 547-556
    • Altamirano, C.1    Illanes, A.2    Becerra, S.3    Cairo, J.J.4    Godia, F.5
  • 3
    • 0035103574 scopus 로고    scopus 로고
    • A modeling study of feed forward activation in human erythrocyte glycolysis
    • Bali M., Thomas S.R. A modeling study of feed forward activation in human erythrocyte glycolysis. C. R. Acad. Sci.-Ser. III 2001, 324:185-199.
    • (2001) C. R. Acad. Sci.-Ser. III , vol.324 , pp. 185-199
    • Bali, M.1    Thomas, S.R.2
  • 5
    • 70449644790 scopus 로고    scopus 로고
    • Linear control analysis of the autocatalytic glycolysis system, In: Proceedings of the American Control Conference, American Automatic Control Council, St. Louis, 2009 (in chez).
    • F.A. Chandra, G. Buzi, J.C. Doyle, Linear control analysis of the autocatalytic glycolysis system, In: Proceedings of the American Control Conference, American Automatic Control Council, St. Louis, 2009 (in chez).
    • Chandra, F.A.1    Buzi, G.2    Doyle, J.C.3
  • 6
    • 77950805294 scopus 로고    scopus 로고
    • The control systems structures of energy metabolism
    • Cloutier M., Wellstead P. The control systems structures of energy metabolism. J. R. Soc. Interface 2010, 7:651-665.
    • (2010) J. R. Soc. Interface , vol.7 , pp. 651-665
    • Cloutier, M.1    Wellstead, P.2
  • 7
    • 34547759811 scopus 로고    scopus 로고
    • Dynamic flux cartography of hairy roots primary metabolism
    • Cloutier M., Perrier M., Jolicoeur M. Dynamic flux cartography of hairy roots primary metabolism. Phytochemistry 2007, 68:2393-2404.
    • (2007) Phytochemistry , vol.68 , pp. 2393-2404
    • Cloutier, M.1    Perrier, M.2    Jolicoeur, M.3
  • 8
    • 0002476870 scopus 로고    scopus 로고
    • Control of Glycolysis and Glycogen Metabolism
    • Oxford University Press, New York, (in chez)
    • Connett R., Sahlin K. Control of Glycolysis and Glycogen Metabolism. Handbook of physiology 1996, 870-911. Oxford University Press, New York, (in chez).
    • (1996) Handbook of physiology , pp. 870-911
    • Connett, R.1    Sahlin, K.2
  • 9
    • 0037082158 scopus 로고    scopus 로고
    • High-level and high throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells
    • Durocher Y., Perret S., Kamen A. High-level and high throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res. 2002, 30:E9.
    • (2002) Nucleic Acids Res. , vol.30
    • Durocher, Y.1    Perret, S.2    Kamen, A.3
  • 10
    • 0038037716 scopus 로고    scopus 로고
    • Phosphotransfer networks and cellular energetics
    • Dzeja P.P., Terzic A. Phosphotransfer networks and cellular energetics. J. Exp. Biol. 2003, 206:2039-2047.
    • (2003) J. Exp. Biol. , vol.206 , pp. 2039-2047
    • Dzeja, P.P.1    Terzic, A.2
  • 12
    • 84883025842 scopus 로고    scopus 로고
    • Improving mammalian cell line protein production using a metabolic model-based approach
    • Feist A., Rosenbloom J. Improving mammalian cell line protein production using a metabolic model-based approach. ESACT 2011, 22.
    • (2011) ESACT , vol.22
    • Feist, A.1    Rosenbloom, J.2
  • 15
    • 0021951939 scopus 로고
    • Spin-label oximetry: kinetic study of cell respiration using a rapid passage T1 sensitive electron spin resonance display
    • Froncisz W., Lai C.S., Hyde J.S. Spin-label oximetry: kinetic study of cell respiration using a rapid passage T1 sensitive electron spin resonance display. PNAS 1985, 82:411-415.
    • (1985) PNAS , vol.82 , pp. 411-415
    • Froncisz, W.1    Lai, C.S.2    Hyde, J.S.3
  • 16
    • 0025400371 scopus 로고
    • Fermentation pathway kinetics and metabolic flux control in suspended and immobilized Saccharomyces cerevisiae
    • (A)
    • Gallazo J.L., Bailey J.E. Fermentation pathway kinetics and metabolic flux control in suspended and immobilized Saccharomyces cerevisiae. Enzyme Microb. Tech. 1990, 12:162-172. (A).
    • (1990) Enzyme Microb. Tech. , vol.12 , pp. 162-172
    • Gallazo, J.L.1    Bailey, J.E.2
  • 17
    • 84880132740 scopus 로고    scopus 로고
    • A kinetic-metabolic model based on cell energetic state: study of CHO cell behavior under Na-butyrate stimulation
    • Ghorbaniaghdam A., Henry O., Jolicoeur M. A kinetic-metabolic model based on cell energetic state: study of CHO cell behavior under Na-butyrate stimulation. Bioprocess Biosyst. Eng. 2012, 36:469-487.
    • (2012) Bioprocess Biosyst. Eng. , vol.36 , pp. 469-487
    • Ghorbaniaghdam, A.1    Henry, O.2    Jolicoeur, M.3
  • 18
    • 84898483881 scopus 로고    scopus 로고
    • Metabolomics and in-silico analysis of monoclonal antibody-producing CHO cell clones
    • Ghorbaniaghdam A., Chen J., Henry O., Jolicoeur M. Metabolomics and in-silico analysis of monoclonal antibody-producing CHO cell clones. PLoS ONE 2014, 9:e90832.
    • (2014) PLoS ONE , vol.9
    • Ghorbaniaghdam, A.1    Chen, J.2    Henry, O.3    Jolicoeur, M.4
  • 19
    • 36248952170 scopus 로고    scopus 로고
    • The stability and robustness of metabolic states: identifying stabilizing sites in metabolic networks
    • Grimbs S., Selbig J., Bulik S., Holzhutter H.G., Steuer R. The stability and robustness of metabolic states: identifying stabilizing sites in metabolic networks. Mol. Syst. Biol. 2007, 3:146.
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 146
    • Grimbs, S.1    Selbig, J.2    Bulik, S.3    Holzhutter, H.G.4    Steuer, R.5
  • 20
    • 0035542970 scopus 로고    scopus 로고
    • AMP-activated protein kinase: the energy charge hypothesis revisited
    • Hardie D.G., Hawley S.A. AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays 2001, 23:1112-1119.
    • (2001) Bioessays , vol.23 , pp. 1112-1119
    • Hardie, D.G.1    Hawley, S.A.2
  • 24
    • 33644614520 scopus 로고    scopus 로고
    • HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia
    • Kim J.W., Tchernyshyov I., Semenza G.L., Dang C.V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006, 3:177-185.
    • (2006) Cell Metab. , vol.3 , pp. 177-185
    • Kim, J.W.1    Tchernyshyov, I.2    Semenza, G.L.3    Dang, C.V.4
  • 25
    • 38649128178 scopus 로고    scopus 로고
    • Acetylcholine inhibits long-term hypoxia-induced apoptosis by suppressing the oxidative stress-mediated MAPKs activation as well as regulation of Bcl-2, c-IAPs, and caspase-3 in mouse embryonic stem cells
    • Kim M.H., Kim M.O., Heo J.S., Kim J.S., Han H.J. Acetylcholine inhibits long-term hypoxia-induced apoptosis by suppressing the oxidative stress-mediated MAPKs activation as well as regulation of Bcl-2, c-IAPs, and caspase-3 in mouse embryonic stem cells. Apoptosis 2008, 13:295-304.
    • (2008) Apoptosis , vol.13 , pp. 295-304
    • Kim, M.H.1    Kim, M.O.2    Heo, J.S.3    Kim, J.S.4    Han, H.J.5
  • 26
    • 0036500993 scopus 로고    scopus 로고
    • Systems biology: a brief overview
    • Kitano H. Systems biology: a brief overview. Science 2002, 295:1662-1664.
    • (2002) Science , vol.295 , pp. 1662-1664
    • Kitano, H.1
  • 27
    • 3042647922 scopus 로고    scopus 로고
    • Theoretical studies on the regulation of anaerobic glycolysis and its influence on oxidative phosphorylation in skeletal muscle
    • Korzeniewski B., Liguzinski P. Theoretical studies on the regulation of anaerobic glycolysis and its influence on oxidative phosphorylation in skeletal muscle. Biophys. Chem. 2004, 110:147-169.
    • (2004) Biophys. Chem. , vol.110 , pp. 147-169
    • Korzeniewski, B.1    Liguzinski, P.2
  • 28
    • 34250628439 scopus 로고    scopus 로고
    • Proliferation control strategies to improve productivity and survival during CHO based production culture
    • Kumar N., Gammell P., Clynes M. Proliferation control strategies to improve productivity and survival during CHO based production culture. Cytotechnology 2007, 53:33-46.
    • (2007) Cytotechnology , vol.53 , pp. 33-46
    • Kumar, N.1    Gammell, P.2    Clynes, M.3
  • 29
  • 30
    • 84871722305 scopus 로고    scopus 로고
    • Flux balance analysis of CHO cells before and after a metabolic switch from lactate production to consumption
    • Martínez V.S., Dietmair S., Quek L.E., Hodson M.P., Gray P., Nielsen L.K. Flux balance analysis of CHO cells before and after a metabolic switch from lactate production to consumption. Biotechnol. Bioeng. 2013, 110:660-666.
    • (2013) Biotechnol. Bioeng. , vol.110 , pp. 660-666
    • Martínez, V.S.1    Dietmair, S.2    Quek, L.E.3    Hodson, M.P.4    Gray, P.5    Nielsen, L.K.6
  • 32
    • 33845935849 scopus 로고    scopus 로고
    • Large-scale transfection of mammalian cells for the fast production of recombinant protein
    • Pham P.L., Kamen A., Durocher Y. Large-scale transfection of mammalian cells for the fast production of recombinant protein. Mol. Biotechnol. 2006, 34:225-237.
    • (2006) Mol. Biotechnol. , vol.34 , pp. 225-237
    • Pham, P.L.1    Kamen, A.2    Durocher, Y.3
  • 33
    • 67649987963 scopus 로고    scopus 로고
    • Optimal metabolic regulation using a constraint-based model
    • Riehl W.J., Segrè D. Optimal metabolic regulation using a constraint-based model. Genome Inform. 2008, 20:159-170.
    • (2008) Genome Inform. , vol.20 , pp. 159-170
    • Riehl, W.J.1    Segrè, D.2
  • 34
    • 84901491086 scopus 로고
    • Network analysis of intermediary metabolism using linear optimization. II. Interpretation of hybridoma cell metabolism
    • Savinell J., Palsson B.O. Network analysis of intermediary metabolism using linear optimization. II. Interpretation of hybridoma cell metabolism. J. Theor. Biol. 1992, 73:154-455.
    • (1992) J. Theor. Biol. , vol.73 , pp. 154-455
    • Savinell, J.1    Palsson, B.O.2
  • 36
    • 0026833077 scopus 로고
    • Mathematical model for the effects of epidermal growth-factor receptor trafficking dynamics on fibroblast proliferation responses
    • Starbuck C., Lauffenburger D.A. Mathematical model for the effects of epidermal growth-factor receptor trafficking dynamics on fibroblast proliferation responses. Biotechnol. Prog. 1992, 8:132-143.
    • (1992) Biotechnol. Prog. , vol.8 , pp. 132-143
    • Starbuck, C.1    Lauffenburger, D.A.2
  • 37
    • 33747061013 scopus 로고    scopus 로고
    • Structural kinetic modeling of metabolic networks
    • Steuer R., Junker B.H. Structural kinetic modeling of metabolic networks. PNAS 2006, 32:11868-11873.
    • (2006) PNAS , vol.32 , pp. 11868-11873
    • Steuer, R.1    Junker, B.H.2
  • 38
    • 84872649734 scopus 로고    scopus 로고
    • Analyzing the effect of decreasing cytosolic triosephosphate isomerase on Solanum tuberosum hairy root cells using a kinetic-metabolic model
    • Valancin A., Srinivasan B., Rivoal J., Jolicoeur M. Analyzing the effect of decreasing cytosolic triosephosphate isomerase on Solanum tuberosum hairy root cells using a kinetic-metabolic model. Biotechnol. Bioeng. 2013, 110:924-935.
    • (2013) Biotechnol. Bioeng. , vol.110 , pp. 924-935
    • Valancin, A.1    Srinivasan, B.2    Rivoal, J.3    Jolicoeur, M.4
  • 39
    • 10044224601 scopus 로고    scopus 로고
    • Metabolic control analysis under uncertainty: framework development and case studies
    • Wang L., Birol I., Hatzimanikatis V. Metabolic control analysis under uncertainty: framework development and case studies. Biophys. J. 2004, 86:3750-3763.
    • (2004) Biophys. J. , vol.86 , pp. 3750-3763
    • Wang, L.1    Birol, I.2    Hatzimanikatis, V.3
  • 40
    • 79952167247 scopus 로고    scopus 로고
    • Hypoxia. 2. Hypoxia regulates cellular metabolism
    • Wheaton W.W., Chandel N.S. Hypoxia. 2. Hypoxia regulates cellular metabolism. Am. J. Physiol. 2011, 300:385-393.
    • (2011) Am. J. Physiol. , vol.300 , pp. 385-393
    • Wheaton, W.W.1    Chandel, N.S.2
  • 41
    • 80052730008 scopus 로고    scopus 로고
    • Comparative metabolic analysis of lactate for CHO cells in glucose and galactose
    • Wilkens C., Altamirano C., Gerdtzen Z. Comparative metabolic analysis of lactate for CHO cells in glucose and galactose. Biotechnol. Bioprocess Eng. 2011, 16:714-724.
    • (2011) Biotechnol. Bioprocess Eng. , vol.16 , pp. 714-724
    • Wilkens, C.1    Altamirano, C.2    Gerdtzen, Z.3
  • 43
    • 78649447462 scopus 로고    scopus 로고
    • A detailed metabolic flux analysis of an underdetermined network of CHO cells
    • Zamorano F., Wouwer A.V., Bastin G. A detailed metabolic flux analysis of an underdetermined network of CHO cells. J. Biotech. 2010, 150:497-508.
    • (2010) J. Biotech. , vol.150 , pp. 497-508
    • Zamorano, F.1    Wouwer, A.V.2    Bastin, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.