메뉴 건너뛰기




Volumn 43, Issue 7, 2007, Pages

Effect of missing data on performance of learning algorithms for hydrologic predictions: Implications to an imputation technique

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING ALGORITHMS; MATHEMATICAL MODELS; NEURAL NETWORKS; SUPPORT VECTOR MACHINES;

EID: 36649000728     PISSN: 00431397     EISSN: None     Source Type: Journal    
DOI: 10.1029/2006WR005298     Document Type: Article
Times cited : (73)

References (33)
  • 1
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology, part I: Preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology ASCE
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (ASCE) (2000a), Artificial neural networks in hydrology, part I: Preliminary concepts, J. Hydrol. Eng., 5(2), 124-137.
    • (2000) J. Hydrol. Eng , vol.5 , Issue.2 , pp. 124-137
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology, part II: Hydrologic applications
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology ASCE
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (ASCE) (2000b), Artificial neural networks in hydrology, part II: Hydrologic applications, J. Hydrol. Eng., 5(2), 124-137.
    • (2000) J. Hydrol. Eng , vol.5 , Issue.2 , pp. 124-137
  • 3
    • 10944274219 scopus 로고    scopus 로고
    • Support vectors-based groundwater head observation networks design
    • doi:10.1029/2004WR003304
    • Asefa, T., M. W. Kemblowski, G. Urroz, M. McKee, and A. Khalil (2004), Support vectors-based groundwater head observation networks design, Water Resour. Res., 40, W11509, doi:10.1029/2004WR003304.
    • (2004) Water Resour. Res , vol.40
    • Asefa, T.1    Kemblowski, M.W.2    Urroz, G.3    McKee, M.4    Khalil, A.5
  • 4
    • 34548690772 scopus 로고    scopus 로고
    • Field-scale applicability of three learning algorithms to predict groundwater levels
    • in press
    • Asefa, T., N. Wanakule, and A. Adams (2007), Field-scale applicability of three learning algorithms to predict groundwater levels, J. Am. Water Resour. Assoc., in press.
    • (2007) J. Am. Water Resour. Assoc
    • Asefa, T.1    Wanakule, N.2    Adams, A.3
  • 5
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications, part 1: Background and methodology
    • Bowden, G. J., G. C. Dandy, and H. R. Maier (2005), Input determination for neural network models in water resources applications, part 1: Background and methodology, J. Hydrol., 301, 75-92.
    • (2005) J. Hydrol , vol.301 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 6
    • 0344687410 scopus 로고    scopus 로고
    • Data mining and the impact of missing data
    • doi:10.1108/02635570310497657
    • Brown, M. L., and J. F. Kros (2003), Data mining and the impact of missing data, Ind. Manage. Data Syst., 103(8), 611-621(11), doi:10.1108/02635570310497657.
    • (2003) Ind. Manage. Data Syst , vol.103 , Issue.11-18 , pp. 611-621
    • Brown, M.L.1    Kros, J.F.2
  • 7
    • 0141522834 scopus 로고    scopus 로고
    • Gene expression data analysis using support vector machines
    • Chu, F., and L. Wang (2003), Gene expression data analysis using support vector machines, Proc. Int. Jt. Conf. Neural Networks, 3, 2268-2271.
    • (2003) Proc. Int. Jt. Conf. Neural Networks , vol.3 , pp. 2268-2271
    • Chu, F.1    Wang, L.2
  • 9
    • 0002629270 scopus 로고
    • Maximum likelihood estimation from incomplete data via the EM algorithm
    • Dempster, A. P., N. M. Laird, and D. B. Rubin (1977), Maximum likelihood estimation from incomplete data via the EM algorithm, J. R. Stat. Soc., Ser. B, 39, 1-38.
    • (1977) J. R. Stat. Soc., Ser. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 10
    • 0035398081 scopus 로고    scopus 로고
    • Model induction with support vector machines: Introduction and applications
    • Dibike, B. Y., S. Velickov, D. Solomatine, and B. M. Abbot (2001), Model induction with support vector machines: Introduction and applications, J. Comput. Civ. Eng., 15(3), 208-216.
    • (2001) J. Comput. Civ. Eng , vol.15 , Issue.3 , pp. 208-216
    • Dibike, B.Y.1    Velickov, S.2    Solomatine, D.3    Abbot, B.M.4
  • 11
    • 84862646391 scopus 로고    scopus 로고
    • Ennett, C. M., M. Frize, and C. R. Walker (2001), Influence of missing values on artificial neural network performance, in MedInfo 2001, Stud. Health Technol. Informatics, 84, edited by V. Patel, R. Rogers, and R. Haux, pp. 449-453, Ios Press, Amsterdam.
    • Ennett, C. M., M. Frize, and C. R. Walker (2001), Influence of missing values on artificial neural network performance, in MedInfo 2001, Stud. Health Technol. Informatics, vol. 84, edited by V. Patel, R. Rogers, and R. Haux, pp. 449-453, Ios Press, Amsterdam.
  • 12
    • 33748060863 scopus 로고    scopus 로고
    • Multiobjective particle swarm optimization for parameter estimation in hydrology
    • doi:10.1029/2005WR004528
    • Gill, M. K., Y. H. Kaheil, A. Khalil, M. McKee, and L. Bastidas (2006a), Multiobjective particle swarm optimization for parameter estimation in hydrology, Water Resour. Res., 42, W07417, doi:10.1029/2005WR004528.
    • (2006) Water Resour. Res , vol.42
    • Gill, M.K.1    Kaheil, Y.H.2    Khalil, A.3    McKee, M.4    Bastidas, L.5
  • 14
    • 33749378742 scopus 로고    scopus 로고
    • A new Bayesian recursive technique for parameter estimation
    • doi:10.1029/2005WR004529
    • Kaheil, Y. H., M. K. Gill, M. McKee, and L. Bastidas (2006), A new Bayesian recursive technique for parameter estimation, Water Resour. Res., 42, W08423, doi:10.1029/2005WR004529.
    • (2006) Water Resour. Res , vol.42
    • Kaheil, Y.H.1    Gill, M.K.2    McKee, M.3    Bastidas, L.4
  • 15
    • 10944222348 scopus 로고    scopus 로고
    • Use of soft information to describe the relative uncertainty of calibration data in hydrologic models
    • doi:10.1029/2003WR002939
    • Khadam, I. M., and J. J. Kaluarachchi (2004), Use of soft information to describe the relative uncertainty of calibration data in hydrologic models, Water Resour. Res., 40, W11505, doi:10.1029/2003WR002939.
    • (2004) Water Resour. Res , vol.40
    • Khadam, I.M.1    Kaluarachchi, J.J.2
  • 16
    • 36649035824 scopus 로고    scopus 로고
    • Khalil, A. (2005), Computational learning and data-driven modeling for water resources management and hydrology, dissertation, 160 pp., Utah State Univ., Logan.
    • Khalil, A. (2005), Computational learning and data-driven modeling for water resources management and hydrology, dissertation, 160 pp., Utah State Univ., Logan.
  • 17
    • 20844458468 scopus 로고    scopus 로고
    • Applicability of statistical learning algorithms in ground water quality modeling
    • doi:10.1029/2004WR003608
    • Khalil, A., M. N. Almasri, M. McKee, and J. J. Kaluarachchi (2005), Applicability of statistical learning algorithms in ground water quality modeling, Water Resour. Res., 41, W05010, doi:10.1029/2004WR003608.
    • (2005) Water Resour. Res , vol.41
    • Khalil, A.1    Almasri, M.N.2    McKee, M.3    Kaluarachchi, J.J.4
  • 18
    • 13444304426 scopus 로고    scopus 로고
    • Missing value estimation for DNA microarray gene expression data: Local least squares imputation
    • Kim, H., G. H. Golub, and H. Park (2005), Missing value estimation for DNA microarray gene expression data: Local least squares imputation, Bioinformatics, 21, 187-198.
    • (2005) Bioinformatics , vol.21 , pp. 187-198
    • Kim, H.1    Golub, G.H.2    Park, H.3
  • 19
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983), Optimization by simulated annealing, Science, 220 (4598), 671-680.
    • (1983) Science , vol.220 , Issue.4598 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 20
    • 0032424739 scopus 로고    scopus 로고
    • Using artificial neural networks to estimate missing rainfall data
    • Kuligowski, R. J., and A. P. Barros (1998), Using artificial neural networks to estimate missing rainfall data, J. Am. Water Resour. Assoc., 34(6), 1-11.
    • (1998) J. Am. Water Resour. Assoc , vol.34 , Issue.6 , pp. 1-11
    • Kuligowski, R.J.1    Barros, A.P.2
  • 23
    • 21244439905 scopus 로고    scopus 로고
    • Impact of missing data in training artificial neural networks for computer-aided diagnosis
    • Inst. of Electr. Electron. Eng, Louisville, Ky
    • Markey, M. K., and A. Patel (2004), Impact of missing data in training artificial neural networks for computer-aided diagnosis, paper presented at International Conference on Machine Learning and Applications, Inst. of Electr. Electron. Eng., Louisville, Ky.
    • (2004) paper presented at International Conference on Machine Learning and Applications
    • Markey, M.K.1    Patel, A.2
  • 24
    • 0242643743 scopus 로고    scopus 로고
    • A Bayesian missing values estimation method for gene expression profile data
    • Oba, S., M. Sato, I. Takemasa, M. Monden, K. Matsubara, and S. Ishii (2003), A Bayesian missing values estimation method for gene expression profile data, Bioinformatics, 19, 2088-2096.
    • (2003) Bioinformatics , vol.19 , pp. 2088-2096
    • Oba, S.1    Sato, M.2    Takemasa, I.3    Monden, M.4    Matsubara, K.5    Ishii, S.6
  • 26
    • 36649036668 scopus 로고    scopus 로고
    • Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986), Learning internal representations by error propagation, in Parallel Distributed Processing, 1, Foundations, pp. 318-362, MIT Press, Cambridge, Mass.
    • Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986), Learning internal representations by error propagation, in Parallel Distributed Processing, vol. 1, Foundations, pp. 318-362, MIT Press, Cambridge, Mass.
  • 28
    • 34548693686 scopus 로고    scopus 로고
    • July, prepared for Southwest Florida Water Management District, Clearwater, Fla
    • Tampa Bay Water (2005), Optimized regional operations plan annual report: July 2005, prepared for Southwest Florida Water Management District, Clearwater, Fla.
    • (2005) Optimized regional operations plan annual report
    • Bay Water, T.1
  • 33
    • 10844277106 scopus 로고    scopus 로고
    • Nearest neighbour approach in the least-squares data imputation algorithms
    • Wasito, I., and B. Mirkin (2005), Nearest neighbour approach in the least-squares data imputation algorithms, Inf. Sci. Int. J., 169(1-2), 1-25.
    • (2005) Inf. Sci. Int. J , vol.169 , Issue.1-2 , pp. 1-25
    • Wasito, I.1    Mirkin, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.