-
1
-
-
0034174396
-
Artificial neural networks in hydrology, part I: Preliminary concepts
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology ASCE
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (ASCE) (2000a), Artificial neural networks in hydrology, part I: Preliminary concepts, J. Hydrol. Eng., 5(2), 124-137.
-
(2000)
J. Hydrol. Eng
, vol.5
, Issue.2
, pp. 124-137
-
-
-
2
-
-
0034174396
-
Artificial neural networks in hydrology, part II: Hydrologic applications
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology ASCE
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (ASCE) (2000b), Artificial neural networks in hydrology, part II: Hydrologic applications, J. Hydrol. Eng., 5(2), 124-137.
-
(2000)
J. Hydrol. Eng
, vol.5
, Issue.2
, pp. 124-137
-
-
-
3
-
-
10944274219
-
Support vectors-based groundwater head observation networks design
-
doi:10.1029/2004WR003304
-
Asefa, T., M. W. Kemblowski, G. Urroz, M. McKee, and A. Khalil (2004), Support vectors-based groundwater head observation networks design, Water Resour. Res., 40, W11509, doi:10.1029/2004WR003304.
-
(2004)
Water Resour. Res
, vol.40
-
-
Asefa, T.1
Kemblowski, M.W.2
Urroz, G.3
McKee, M.4
Khalil, A.5
-
4
-
-
34548690772
-
Field-scale applicability of three learning algorithms to predict groundwater levels
-
in press
-
Asefa, T., N. Wanakule, and A. Adams (2007), Field-scale applicability of three learning algorithms to predict groundwater levels, J. Am. Water Resour. Assoc., in press.
-
(2007)
J. Am. Water Resour. Assoc
-
-
Asefa, T.1
Wanakule, N.2
Adams, A.3
-
5
-
-
10644295753
-
Input determination for neural network models in water resources applications, part 1: Background and methodology
-
Bowden, G. J., G. C. Dandy, and H. R. Maier (2005), Input determination for neural network models in water resources applications, part 1: Background and methodology, J. Hydrol., 301, 75-92.
-
(2005)
J. Hydrol
, vol.301
, pp. 75-92
-
-
Bowden, G.J.1
Dandy, G.C.2
Maier, H.R.3
-
6
-
-
0344687410
-
Data mining and the impact of missing data
-
doi:10.1108/02635570310497657
-
Brown, M. L., and J. F. Kros (2003), Data mining and the impact of missing data, Ind. Manage. Data Syst., 103(8), 611-621(11), doi:10.1108/02635570310497657.
-
(2003)
Ind. Manage. Data Syst
, vol.103
, Issue.11-18
, pp. 611-621
-
-
Brown, M.L.1
Kros, J.F.2
-
7
-
-
0141522834
-
Gene expression data analysis using support vector machines
-
Chu, F., and L. Wang (2003), Gene expression data analysis using support vector machines, Proc. Int. Jt. Conf. Neural Networks, 3, 2268-2271.
-
(2003)
Proc. Int. Jt. Conf. Neural Networks
, vol.3
, pp. 2268-2271
-
-
Chu, F.1
Wang, L.2
-
9
-
-
0002629270
-
Maximum likelihood estimation from incomplete data via the EM algorithm
-
Dempster, A. P., N. M. Laird, and D. B. Rubin (1977), Maximum likelihood estimation from incomplete data via the EM algorithm, J. R. Stat. Soc., Ser. B, 39, 1-38.
-
(1977)
J. R. Stat. Soc., Ser. B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
10
-
-
0035398081
-
Model induction with support vector machines: Introduction and applications
-
Dibike, B. Y., S. Velickov, D. Solomatine, and B. M. Abbot (2001), Model induction with support vector machines: Introduction and applications, J. Comput. Civ. Eng., 15(3), 208-216.
-
(2001)
J. Comput. Civ. Eng
, vol.15
, Issue.3
, pp. 208-216
-
-
Dibike, B.Y.1
Velickov, S.2
Solomatine, D.3
Abbot, B.M.4
-
11
-
-
84862646391
-
-
Ennett, C. M., M. Frize, and C. R. Walker (2001), Influence of missing values on artificial neural network performance, in MedInfo 2001, Stud. Health Technol. Informatics, 84, edited by V. Patel, R. Rogers, and R. Haux, pp. 449-453, Ios Press, Amsterdam.
-
Ennett, C. M., M. Frize, and C. R. Walker (2001), Influence of missing values on artificial neural network performance, in MedInfo 2001, Stud. Health Technol. Informatics, vol. 84, edited by V. Patel, R. Rogers, and R. Haux, pp. 449-453, Ios Press, Amsterdam.
-
-
-
-
12
-
-
33748060863
-
Multiobjective particle swarm optimization for parameter estimation in hydrology
-
doi:10.1029/2005WR004528
-
Gill, M. K., Y. H. Kaheil, A. Khalil, M. McKee, and L. Bastidas (2006a), Multiobjective particle swarm optimization for parameter estimation in hydrology, Water Resour. Res., 42, W07417, doi:10.1029/2005WR004528.
-
(2006)
Water Resour. Res
, vol.42
-
-
Gill, M.K.1
Kaheil, Y.H.2
Khalil, A.3
McKee, M.4
Bastidas, L.5
-
13
-
-
33748030511
-
Soil moisture prediction using support vector machines
-
Gill, M. K., T. Asefa, M. McKee, and M. W. Kemblowski (2006b), Soil moisture prediction using support vector machines, J. Am. Water Resour. Assoc., 42(4), 1033-1046.
-
(2006)
J. Am. Water Resour. Assoc
, vol.42
, Issue.4
, pp. 1033-1046
-
-
Gill, M.K.1
Asefa, T.2
McKee, M.3
Kemblowski, M.W.4
-
14
-
-
33749378742
-
A new Bayesian recursive technique for parameter estimation
-
doi:10.1029/2005WR004529
-
Kaheil, Y. H., M. K. Gill, M. McKee, and L. Bastidas (2006), A new Bayesian recursive technique for parameter estimation, Water Resour. Res., 42, W08423, doi:10.1029/2005WR004529.
-
(2006)
Water Resour. Res
, vol.42
-
-
Kaheil, Y.H.1
Gill, M.K.2
McKee, M.3
Bastidas, L.4
-
15
-
-
10944222348
-
Use of soft information to describe the relative uncertainty of calibration data in hydrologic models
-
doi:10.1029/2003WR002939
-
Khadam, I. M., and J. J. Kaluarachchi (2004), Use of soft information to describe the relative uncertainty of calibration data in hydrologic models, Water Resour. Res., 40, W11505, doi:10.1029/2003WR002939.
-
(2004)
Water Resour. Res
, vol.40
-
-
Khadam, I.M.1
Kaluarachchi, J.J.2
-
16
-
-
36649035824
-
-
Khalil, A. (2005), Computational learning and data-driven modeling for water resources management and hydrology, dissertation, 160 pp., Utah State Univ., Logan.
-
Khalil, A. (2005), Computational learning and data-driven modeling for water resources management and hydrology, dissertation, 160 pp., Utah State Univ., Logan.
-
-
-
-
17
-
-
20844458468
-
Applicability of statistical learning algorithms in ground water quality modeling
-
doi:10.1029/2004WR003608
-
Khalil, A., M. N. Almasri, M. McKee, and J. J. Kaluarachchi (2005), Applicability of statistical learning algorithms in ground water quality modeling, Water Resour. Res., 41, W05010, doi:10.1029/2004WR003608.
-
(2005)
Water Resour. Res
, vol.41
-
-
Khalil, A.1
Almasri, M.N.2
McKee, M.3
Kaluarachchi, J.J.4
-
18
-
-
13444304426
-
Missing value estimation for DNA microarray gene expression data: Local least squares imputation
-
Kim, H., G. H. Golub, and H. Park (2005), Missing value estimation for DNA microarray gene expression data: Local least squares imputation, Bioinformatics, 21, 187-198.
-
(2005)
Bioinformatics
, vol.21
, pp. 187-198
-
-
Kim, H.1
Golub, G.H.2
Park, H.3
-
19
-
-
26444479778
-
Optimization by simulated annealing
-
Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983), Optimization by simulated annealing, Science, 220 (4598), 671-680.
-
(1983)
Science
, vol.220
, Issue.4598
, pp. 671-680
-
-
Kirkpatrick, S.1
Gelatt, C.D.2
Vecchi, M.P.3
-
20
-
-
0032424739
-
Using artificial neural networks to estimate missing rainfall data
-
Kuligowski, R. J., and A. P. Barros (1998), Using artificial neural networks to estimate missing rainfall data, J. Am. Water Resour. Assoc., 34(6), 1-11.
-
(1998)
J. Am. Water Resour. Assoc
, vol.34
, Issue.6
, pp. 1-11
-
-
Kuligowski, R.J.1
Barros, A.P.2
-
21
-
-
0036202123
-
Flood stage forecasting with SVM
-
Liong, S. Y., and C. Sivapragasam (2002), Flood stage forecasting with SVM, J. Am. Water Resour. Assoc., 38(1), 173-186.
-
(2002)
J. Am. Water Resour. Assoc
, vol.38
, Issue.1
, pp. 173-186
-
-
Liong, S.Y.1
Sivapragasam, C.2
-
23
-
-
21244439905
-
Impact of missing data in training artificial neural networks for computer-aided diagnosis
-
Inst. of Electr. Electron. Eng, Louisville, Ky
-
Markey, M. K., and A. Patel (2004), Impact of missing data in training artificial neural networks for computer-aided diagnosis, paper presented at International Conference on Machine Learning and Applications, Inst. of Electr. Electron. Eng., Louisville, Ky.
-
(2004)
paper presented at International Conference on Machine Learning and Applications
-
-
Markey, M.K.1
Patel, A.2
-
24
-
-
0242643743
-
A Bayesian missing values estimation method for gene expression profile data
-
Oba, S., M. Sato, I. Takemasa, M. Monden, K. Matsubara, and S. Ishii (2003), A Bayesian missing values estimation method for gene expression profile data, Bioinformatics, 19, 2088-2096.
-
(2003)
Bioinformatics
, vol.19
, pp. 2088-2096
-
-
Oba, S.1
Sato, M.2
Takemasa, I.3
Monden, M.4
Matsubara, K.5
Ishii, S.6
-
26
-
-
36649036668
-
-
Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986), Learning internal representations by error propagation, in Parallel Distributed Processing, 1, Foundations, pp. 318-362, MIT Press, Cambridge, Mass.
-
Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986), Learning internal representations by error propagation, in Parallel Distributed Processing, vol. 1, Foundations, pp. 318-362, MIT Press, Cambridge, Mass.
-
-
-
-
27
-
-
0031272926
-
Comparing support vector machines with Gaussian kernels to radial basis function classifiers
-
Scholkopf, B., K. Sung, J. C. Chris, C. Burges, F. Girosi, T. Poggio, and V. Vapnik (1997), Comparing support vector machines with Gaussian kernels to radial basis function classifiers, IEEE Trans. Signal Process., 45(11), 2758-2765.
-
(1997)
IEEE Trans. Signal Process
, vol.45
, Issue.11
, pp. 2758-2765
-
-
Scholkopf, B.1
Sung, K.2
Chris, J.C.3
Burges, C.4
Girosi, F.5
Poggio, T.6
Vapnik, V.7
-
28
-
-
34548693686
-
-
July, prepared for Southwest Florida Water Management District, Clearwater, Fla
-
Tampa Bay Water (2005), Optimized regional operations plan annual report: July 2005, prepared for Southwest Florida Water Management District, Clearwater, Fla.
-
(2005)
Optimized regional operations plan annual report
-
-
Bay Water, T.1
-
29
-
-
0003664883
-
-
W. H. Winston, Washington, D. C
-
Tikhonov, A., and V. Arsenin (1977), Solutions of Ill-Posed Problems, W. H. Winston, Washington, D. C.
-
(1977)
Solutions of Ill-Posed Problems
-
-
Tikhonov, A.1
Arsenin, V.2
-
30
-
-
0034960264
-
Missing value estimation methods for DNA microarrays
-
Troyanskaya, O., M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Botstein, and R. B. Altman (2001), Missing value estimation methods for DNA microarrays, Bioinformatics, 17, 1-6.
-
(2001)
Bioinformatics
, vol.17
, pp. 1-6
-
-
Troyanskaya, O.1
Cantor, M.2
Sherlock, G.3
Brown, P.4
Hastie, T.5
Tibshirani, R.6
Botstein, D.7
Altman, R.B.8
-
33
-
-
10844277106
-
Nearest neighbour approach in the least-squares data imputation algorithms
-
Wasito, I., and B. Mirkin (2005), Nearest neighbour approach in the least-squares data imputation algorithms, Inf. Sci. Int. J., 169(1-2), 1-25.
-
(2005)
Inf. Sci. Int. J
, vol.169
, Issue.1-2
, pp. 1-25
-
-
Wasito, I.1
Mirkin, B.2
|