메뉴 건너뛰기




Volumn 9, Issue 1, 2014, Pages

The Not4 E3 ligase and CCR4 deadenylase play distinct roles in protein quality control

Author keywords

[No Author keywords available]

Indexed keywords

CCR4 DEADENYLASE; CHEMOKINE RECEPTOR CCR4; CHROMATIN ASSEMBLY FACTOR 1; MESSENGER RNA; NOT4 PROTEIN; PROTEASOME; UBIQUITIN PROTEIN LIGASE E3; UNCLASSIFIED DRUG;

EID: 84898429935     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0086218     Document Type: Article
Times cited : (42)

References (85)
  • 1
    • 84861841297 scopus 로고    scopus 로고
    • Translation drives mRNA quality control
    • Shoemaker CJ, Green R (2012) Translation drives mRNA quality control. Nat Struct Mol Biol 19: 594-601.
    • (2012) Nat Struct Mol Biol , vol.19 , pp. 594-601
    • Shoemaker, C.J.1    Green, R.2
  • 2
    • 36049041612 scopus 로고    scopus 로고
    • RNA Quality Control in Eukaryotes
    • DOI 10.1016/j.cell.2007.10.041, PII S0092867407013955
    • Doma MK, Parker R (2007) RNA quality control in eukaryotes. Cell 131: 660-668. (Pubitemid 350087205)
    • (2007) Cell , vol.131 , Issue.4 , pp. 660-668
    • Doma, M.K.1    Parker, R.2
  • 3
    • 66849143696 scopus 로고    scopus 로고
    • Converging concepts of protein folding in vitro and in vivo
    • Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16: 574-581.
    • (2009) Nat Struct Mol Biol , vol.16 , pp. 574-581
    • Hartl, F.U.1    Hayer-Hartl, M.2
  • 5
    • 0029871812 scopus 로고    scopus 로고
    • Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae
    • Caponigro G, Parker R (1996) Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae. Microbiol Rev 60: 233-249. (Pubitemid 26087769)
    • (1996) Microbiological Reviews , vol.60 , Issue.1 , pp. 233-249
    • Caponigro, G.1    Parker, R.2
  • 6
    • 0027320701 scopus 로고
    • A turnover pathway for both stable and unstable mRNAs in yeast: Evidence for a requirement for deadenylation
    • Decker CJ, Parker R (1993) A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev 7: 1632-1643. (Pubitemid 23234355)
    • (1993) Genes and Development , vol.7 , Issue.8 , pp. 1632-1643
    • Decker, C.J.1    Parker, R.2
  • 7
    • 84885445581 scopus 로고    scopus 로고
    • The Ccr4-Not deadenylase complex constitutes the major poly(A) removal activity in C. elegans
    • Nousch M, Techritz N, Hampel D, Millonigg S, Eckmann CR (2013) The Ccr4-Not deadenylase complex constitutes the major poly(A) removal activity in C. elegans. J Cell Sci 126: 4274-4285.
    • (2013) J Cell Sci , vol.126 , pp. 4274-4285
    • Nousch, M.1    Techritz, N.2    Hampel, D.3    Millonigg, S.4    Eckmann, C.R.5
  • 8
    • 3543016170 scopus 로고    scopus 로고
    • A complex containing the CCR4 and CAF1 proteins is involved in mRNA deadenylation in Drosophila
    • DOI 10.1038/sj.emboj.7600273
    • Temme C, Zaessinger S, Meyer S, Simonelig M, Wahle E (2004) A complex containing the CCR4 and CAF1 proteins is involved in mRNA deadenylation in Drosophila. EMBO J 23: 2862-2871. (Pubitemid 39013558)
    • (2004) EMBO Journal , vol.23 , Issue.14 , pp. 2862-2871
    • Temme, C.1    Zaessinger, S.2    Meyer, S.3    Simonelig, M.4    Wahle, E.5
  • 9
    • 0035830508 scopus 로고    scopus 로고
    • The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae
    • DOI 10.1016/S0092-8674(01)00225-2
    • Tucker M, Valencia-Sanchez MA, Staples RR, Chen J, Denis CL, et al. (2001) The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104: 377-386. (Pubitemid 32206458)
    • (2001) Cell , vol.104 , Issue.3 , pp. 377-386
    • Tucker, M.1    Valencia-Sanchez, M.A.2    Staples, R.R.3    Chen, J.4    Denis, C.L.5    Parker, R.6
  • 11
    • 84862685172 scopus 로고    scopus 로고
    • Ccr4-Not complex: The control freak of eukaryotic cells
    • Miller JE, Reese JC (2012) Ccr4-Not complex: the control freak of eukaryotic cells. Crit Rev Biochem Mol Biol 47: 315-333.
    • (2012) Crit Rev Biochem Mol Biol , vol.47 , pp. 315-333
    • Miller, J.E.1    Reese, J.C.2
  • 12
    • 0242285769 scopus 로고    scopus 로고
    • Global control of gene expression in yeast by the Ccr4-Not complex
    • DOI 10.1016/S0378-1119(03)00672-3
    • Collart MA (2003) Global control of gene expression in yeast by the Ccr4-Not complex. Gene 313: 1-16. (Pubitemid 37338236)
    • (2003) Gene , vol.313 , Issue.1-2 , pp. 1-16
    • Collart, M.A.1
  • 13
    • 84155195139 scopus 로고    scopus 로고
    • The Ccr4-not complex
    • Collart MA, Panasenko OO (2012) The Ccr4-not complex. Gene 492: 42-53.
    • (2012) Gene , vol.492 , pp. 42-53
    • Collart, M.A.1    Panasenko, O.O.2
  • 14
    • 84873247966 scopus 로고    scopus 로고
    • The Not3/5 subunit of the Ccr4-Not complex: A central regulator of gene expression that integrates signals between the cytoplasm and the nucleus in eukaryotic cells
    • Collart MA, Panasenko OO, Nikolaev SI (2013) The Not3/5 subunit of the Ccr4-Not complex: A central regulator of gene expression that integrates signals between the cytoplasm and the nucleus in eukaryotic cells. Cell Signal 25: 743-751.
    • (2013) Cell Signal , vol.25 , pp. 743-751
    • Collart, M.A.1    Panasenko, O.O.2    Nikolaev, S.I.3
  • 15
    • 0034692875 scopus 로고    scopus 로고
    • The essential function of Not1 lies within the Ccr4-Not complex
    • Maillet L, Tu C, Hong YK, Shuster EO, Collart MA (2000) The essential function of Not1 lies within the Ccr4-Not complex. J Mol Biol 303: 131-143.
    • (2000) J Mol Biol , vol.303 , pp. 131-143
    • Maillet, L.1    Tu, C.2    Hong, Y.K.3    Shuster, E.O.4    Collart, M.A.5
  • 16
    • 84868094761 scopus 로고    scopus 로고
    • Architecture of the nuclease module of the yeast ccr4-not complex: The not1-caf1-ccr4 interaction
    • Basquin J, Roudko VV, Rode M, Basquin C, Seraphin B, et al. (2012) Architecture of the nuclease module of the yeast ccr4-not complex: the not1-caf1-ccr4 interaction. Mol Cell 48: 207-218.
    • (2012) Mol Cell , vol.48 , pp. 207-218
    • Basquin, J.1    Roudko, V.V.2    Rode, M.3    Basquin, C.4    Seraphin, B.5
  • 17
    • 84887453009 scopus 로고    scopus 로고
    • Structure and RNA-binding properties of the Not1-Not2-Not5 module of the yeast Ccr4-Not complex
    • Bhaskar V, Roudko V, Basquin J, Sharma K, Urlaub H, et al. (2013) Structure and RNA-binding properties of the Not1-Not2-Not5 module of the yeast Ccr4-Not complex. Nat Struct Mol Biol 20: 1281-1288.
    • (2013) Nat Struct Mol Biol , vol.20 , pp. 1281-1288
    • Bhaskar, V.1    Roudko, V.2    Basquin, J.3    Sharma, K.4    Urlaub, H.5
  • 18
    • 0032874875 scopus 로고    scopus 로고
    • The CCR4 and CAF1 proteins of the CCR4-NOT complex are physically and functionally separated from NOT2, NOT4, and NOT5
    • Bai Y, Salvadore C, Chiang YC, Collart MA, Liu HY, et al. (1999) The CCR4 and CAF1 proteins of the CCR4-NOT complex are physically and functionally separated from NOT2, NOT4, and NOT5. Mol Cell Biol 19: 6642-6651. (Pubitemid 29441848)
    • (1999) Molecular and Cellular Biology , vol.19 , Issue.10 , pp. 6642-6651
    • Bai, Y.1    Salvadore, C.2    Chiang, Y.-C.3    Collart, M.A.4    Liu, H.-Y.5    Denis, C.L.6
  • 22
    • 33748754298 scopus 로고    scopus 로고
    • Rapid ATP-dependent deadenylation of nanos mRNA in a cell-free system from drosophila embryos
    • DOI 10.1074/jbc.M604802200
    • Jeske M, Meyer S, Temme C, Freudenreich D, Wahle E (2006) Rapid ATP-dependent deadenylation of nanos mRNA in a cell-free system from Drosophila embryos. J Biol Chem 281: 25124-25133. (Pubitemid 44401899)
    • (2006) Journal of Biological Chemistry , vol.281 , Issue.35 , pp. 25124-25133
    • Jeske, M.1    Meyer, S.2    Temme, C.3    Freudenreich, D.4    Wahle, E.5
  • 23
    • 77953629665 scopus 로고    scopus 로고
    • Subunits of the Drosophila CCR4-NOT complex and their roles in mRNA deadenylation
    • Temme C, Zhang L, Kremmer E, Ihling C, Chartier A, et al. (2010) Subunits of the Drosophila CCR4-NOT complex and their roles in mRNA deadenylation. RNA 16: 1356-1370.
    • (2010) RNA , vol.16 , pp. 1356-1370
    • Temme, C.1    Zhang, L.2    Kremmer, E.3    Ihling, C.4    Chartier, A.5
  • 25
    • 78649729101 scopus 로고    scopus 로고
    • Cytoplasmic deadenylation: Regulation of mRNA fate
    • Wiederhold K, Passmore LA (2010) Cytoplasmic deadenylation: regulation of mRNA fate. Biochem Soc Trans 38: 1531-1536.
    • (2010) Biochem Soc Trans , vol.38 , pp. 1531-1536
    • Wiederhold, K.1    Passmore, L.A.2
  • 26
    • 77955414308 scopus 로고    scopus 로고
    • The structural basis for deadenylation by the CCR4-NOT complex
    • Bartlam M, Yamamoto T (2011) The structural basis for deadenylation by the CCR4-NOT complex. Protein Cell 1: 443-452.
    • (2011) Protein Cell , vol.1 , pp. 443-452
    • Bartlam, M.1    Yamamoto, T.2
  • 27
    • 84877801967 scopus 로고    scopus 로고
    • RNA decay machines: Deadenylation by the Ccr4-not and Pan2-Pan3 complexes
    • Wahle E, Winkler GS (2013) RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes. Biochim Biophys Acta 1829: 561-570.
    • (2013) Biochim Biophys Acta , vol.1829 , pp. 561-570
    • Wahle, E.1    Winkler, G.S.2
  • 28
    • 0742288008 scopus 로고    scopus 로고
    • The enzymes and control of eukaryotic mRNA turnover
    • DOI 10.1038/nsmb724
    • Parker R, Song H (2004) The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 11: 121-127. (Pubitemid 38146514)
    • (2004) Nature Structural and Molecular Biology , vol.11 , Issue.2 , pp. 121-127
    • Parker, R.1    Song, H.2
  • 29
    • 0037086701 scopus 로고    scopus 로고
    • CCR4, a 3′-5′ poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase
    • DOI 10.1093/emboj/21.6.1414
    • Chen J, Chiang YC, Denis CL (2002) CCR4, a 3′-5′ poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase. EMBO J 21: 1414-1426. (Pubitemid 34246520)
    • (2002) EMBO Journal , vol.21 , Issue.6 , pp. 1414-1426
    • Chen, J.1    Chiang, Y.-C.2    Denis, C.L.3
  • 30
    • 0037086657 scopus 로고    scopus 로고
    • Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae
    • DOI 10.1093/emboj/21.6.1427
    • Tucker M, Staples RR, Valencia-Sanchez MA, Muhlrad D, Parker R (2002) Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J 21: 1427-1436. (Pubitemid 34246521)
    • (2002) EMBO Journal , vol.21 , Issue.6 , pp. 1427-1436
    • Tucker, M.1    Staples, R.R.2    Valencia-Sanchez, M.A.3    Muhlrad, D.4    Parker, R.5
  • 31
    • 41949099124 scopus 로고    scopus 로고
    • The BTG2 protein is a general activator of mRNA deadenylation
    • DOI 10.1038/emboj.2008.43, PII EMBOJ200843
    • Mauxion F, Faux C, Seraphin B (2008) The BTG2 protein is a general activator of mRNA deadenylation. EMBO J 27: 1039-1048. (Pubitemid 351508153)
    • (2008) EMBO Journal , vol.27 , Issue.7 , pp. 1039-1048
    • Mauxion, F.1    Faux, C.2    Seraphin, B.3
  • 32
    • 79960928455 scopus 로고    scopus 로고
    • Not1 mediates recruitment of the deadenylase Caf1 to mRNAs targeted for degradation by tristetraprolin
    • Sandler H, Kreth J, Timmers HT, Stoecklin G (2011) Not1 mediates recruitment of the deadenylase Caf1 to mRNAs targeted for degradation by tristetraprolin. Nucleic Acids Res 39: 4373-4386.
    • (2011) Nucleic Acids Res , vol.39 , pp. 4373-4386
    • Sandler, H.1    Kreth, J.2    Timmers, H.T.3    Stoecklin, G.4
  • 34
    • 0035971097 scopus 로고    scopus 로고
    • The structure of the C4C4 ring finger of human NOT4 reveals features distinct from those of C3HC4 RING fingers
    • Hanzawa H, de Ruwe MJ, Albert TK, van Der Vliet PC, Timmers HT, et al. (2001) The structure of the C4C4 ring finger of human NOT4 reveals features distinct from those of C3HC4 RING fingers. J Biol Chem 276: 10185-10190.
    • (2001) J Biol Chem , vol.276 , pp. 10185-10190
    • Hanzawa, H.1    De Ruwe, M.J.2    Albert, T.K.3    Van Der Vliet, P.C.4    Timmers, H.T.5
  • 35
    • 79953150421 scopus 로고    scopus 로고
    • Not4 E3 Ligase Contributes to Proteasome Assembly and Functional Integrity in Part through Ecm29
    • Panasenko OO, Collart MA (2011) Not4 E3 Ligase Contributes to Proteasome Assembly and Functional Integrity in Part through Ecm29. Mol Cell Biol 31: 1610-1623.
    • (2011) Mol Cell Biol , vol.31 , pp. 1610-1623
    • Panasenko, O.O.1    Collart, M.A.2
  • 36
    • 84908317412 scopus 로고    scopus 로고
    • The NOT4 RING E3 ligase: A relevant player in co-translational quality control
    • ID 548359
    • Collart MA (2013) The NOT4 RING E3 ligase: a relevant player in co-translational quality control. Molecular Biology ID 548359.
    • (2013) Molecular Biology
    • Collart, M.A.1
  • 37
    • 84856026751 scopus 로고    scopus 로고
    • Presence of Not5 and ubiquitinated Rps7A in polysome fractions depends upon the Not4 E3 ligase
    • Panasenko OO, Collart MA (2012) Presence of Not5 and ubiquitinated Rps7A in polysome fractions depends upon the Not4 E3 ligase. Mol Microbiol 83: 640-653.
    • (2012) Mol Microbiol , vol.83 , pp. 640-653
    • Panasenko, O.O.1    Collart, M.A.2
  • 38
    • 33846008044 scopus 로고    scopus 로고
    • The yeast Ccr4-not complex controls ubiquitination of the nascent-associated polypeptide (NAC-EGD) complex
    • DOI 10.1074/jbc.M604986200
    • Panasenko O, Landrieux E, Feuermann M, Finka A, Paquet N, et al. (2006) The yeast Ccr4-Not complex controls ubiquitination of the nascent-associated polypeptide (NAC-EGD) complex. J Biol Chem 281: 31389-31398. (Pubitemid 46041403)
    • (2006) Journal of Biological Chemistry , vol.281 , Issue.42 , pp. 31389-31398
    • Panasenko, O.1    Landrieux, E.2    Feuermann, M.3    Finka, A.4    Paquet, N.5    Collart, M.A.6
  • 39
    • 62449339168 scopus 로고    scopus 로고
    • Ribosome association and stability of the nascent polypeptide-associated complex is dependent upon its own ubiquitination
    • Panasenko OO, David FP, Collart MA (2009) Ribosome association and stability of the nascent polypeptide-associated complex is dependent upon its own ubiquitination. Genetics 181: 447-460.
    • (2009) Genetics , vol.181 , pp. 447-460
    • Panasenko, O.O.1    David, F.P.2    Collart, M.A.3
  • 40
    • 66849136862 scopus 로고    scopus 로고
    • Nascent peptide-dependent translation arrest leads to Not4p-mediated protein degradation by the proteasome
    • Dimitrova LN, Kuroha K, Tatematsu T, Inada T (2009) Nascent peptide-dependent translation arrest leads to Not4p-mediated protein degradation by the proteasome. J Biol Chem 284: 10343-10352.
    • (2009) J Biol Chem , vol.284 , pp. 10343-10352
    • Dimitrova, L.N.1    Kuroha, K.2    Tatematsu, T.3    Inada, T.4
  • 41
    • 77957169824 scopus 로고    scopus 로고
    • Role of a ribosome-associated E3 ubiquitin ligase in protein quality control
    • Bengtson MH, Joazeiro CA (2010) Role of a ribosome-associated E3 ubiquitin ligase in protein quality control. Nature 467: 470-473.
    • (2010) Nature , vol.467 , pp. 470-473
    • Bengtson, M.H.1    Joazeiro, C.A.2
  • 42
    • 77954196466 scopus 로고    scopus 로고
    • Ubr1 and Ubr2 function in a quality control pathway for degradation of unfolded cytosolic proteins
    • Nillegoda NB, Theodoraki MA, Mandal AK, Mayo KJ, Ren HY, et al. (2010) Ubr1 and Ubr2 function in a quality control pathway for degradation of unfolded cytosolic proteins. Mol Biol Cell 21: 2102-2116.
    • (2010) Mol Biol Cell , vol.21 , pp. 2102-2116
    • Nillegoda, N.B.1    Theodoraki, M.A.2    Mandal, A.K.3    Mayo, K.J.4    Ren, H.Y.5
  • 43
    • 17644393551 scopus 로고    scopus 로고
    • San1p, checking up on nuclear proteins
    • DOI 10.1016/j.cell.2005.03.003
    • Sommer T, Hirsch C (2005) San1p, checking up on nuclear proteins. Cell 120: 734-736. (Pubitemid 40568791)
    • (2005) Cell , vol.120 , Issue.6 , pp. 734-736
    • Sommer, T.1    Hirsch, C.2
  • 44
    • 17644396667 scopus 로고    scopus 로고
    • Degradation-mediated protein quality control in the nucleus
    • DOI 10.1016/j.cell.2005.01.016
    • Gardner RG, Nelson ZW, Gottschling DE (2005) Degradation-mediated protein quality control in the nucleus. Cell 120: 803-815. (Pubitemid 40568798)
    • (2005) Cell , vol.120 , Issue.6 , pp. 803-815
    • Gardner, R.G.1    Nelson, Z.W.2    Gottschling, D.E.3
  • 45
    • 84867440649 scopus 로고    scopus 로고
    • E3 ubiquitin ligases in protein quality control mechanism
    • Chhangani D, Joshi AP, Mishra A (2012) E3 ubiquitin ligases in protein quality control mechanism. Mol Neurobiol 45: 571-585.
    • (2012) Mol Neurobiol , vol.45 , pp. 571-585
    • Chhangani, D.1    Joshi, A.P.2    Mishra, A.3
  • 46
    • 0032535483 scopus 로고    scopus 로고
    • The ubiquitin-proteasome pathway: On protein death and cell life
    • Ciechanover A (1998) The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J 17: 7151-7160.
    • (1998) EMBO J , vol.17 , pp. 7151-7160
    • Ciechanover, A.1
  • 47
    • 0346727127 scopus 로고    scopus 로고
    • Protein degradation and protection against misfolded or damaged proteins
    • Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426: 895-899.
    • (2003) Nature , vol.426 , pp. 895-899
    • Goldberg, A.L.1
  • 48
    • 65649115267 scopus 로고    scopus 로고
    • Recognition and processing of ubiquitin-protein conjugates by the proteasome
    • Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78: 477-513.
    • (2009) Annu Rev Biochem , vol.78 , pp. 477-513
    • Finley, D.1
  • 49
    • 84867176120 scopus 로고    scopus 로고
    • The ubiquitin-proteasome system of Saccharomyces cerevisiae
    • Finley D, Ulrich HD, Sommer T, Kaiser P (2012) The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 192: 319-360.
    • (2012) Genetics , vol.192 , pp. 319-360
    • Finley, D.1    Ulrich, H.D.2    Sommer, T.3    Kaiser, P.4
  • 50
    • 84876916040 scopus 로고    scopus 로고
    • Structural biology of the proteasome
    • Kish-Trier E, Hill CP (2013) Structural biology of the proteasome. Annu Rev Biophys 42: 29-49.
    • (2013) Annu Rev Biophys , vol.42 , pp. 29-49
    • Kish-Trier, E.1    Hill, C.P.2
  • 52
    • 0037129213 scopus 로고    scopus 로고
    • A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal
    • DOI 10.1038/416763a
    • Lam YA, Lawson TG, Velayutham M, Zweier JL, Pickart CM (2002) A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 416: 763-767. (Pubitemid 34429155)
    • (2002) Nature , vol.416 , Issue.6882 , pp. 763-767
    • Lam, Y.A.1    Lawson, T.G.2    Velayutham, M.3    Zweler, J.L.4    Pickart, C.M.5
  • 57
    • 0030774890 scopus 로고    scopus 로고
    • The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing
    • DOI 10.1074/jbc.272.40.25200
    • Heinemeyer W, Fischer M, Krimmer T, Stachon U, Wolf DH (1997) The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing. J Biol Chem 272: 25200-25209. (Pubitemid 27415707)
    • (1997) Journal of Biological Chemistry , vol.272 , Issue.40 , pp. 25200-25209
    • Heinemeyer, W.1    Fischer, M.2    Krimmer, T.3    Stachon, U.4    Wolf, D.H.5
  • 59
    • 0033780610 scopus 로고    scopus 로고
    • A regulatory link between ER-associated protein degradation and the unfolded-protein response
    • Friedlander R, Jarosch E, Urban J, Volkwein C, Sommer T (2000) A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nat Cell Biol 2: 379-384.
    • (2000) Nat Cell Biol , vol.2 , pp. 379-384
    • Friedlander, R.1    Jarosch, E.2    Urban, J.3    Volkwein, C.4    Sommer, T.5
  • 60
    • 0032775010 scopus 로고    scopus 로고
    • Epitope tagging of yeast genes using a PCR-based strategy: More tags and improved practical routines
    • Knop M, Siegers K, Pereira G, Zachariae W, Winsor B, et al. (1999) Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15: 963-972.
    • (1999) Yeast , vol.15 , pp. 963-972
    • Knop, M.1    Siegers, K.2    Pereira, G.3    Zachariae, W.4    Winsor, B.5
  • 61
    • 0034733591 scopus 로고    scopus 로고
    • Rapid and reliable protein extraction from yeast
    • Kushnirov VV (2000) Rapid and reliable protein extraction from yeast. Yeast 16: 857-860.
    • (2000) Yeast , vol.16 , pp. 857-860
    • Kushnirov, V.V.1
  • 62
    • 27644576445 scopus 로고    scopus 로고
    • Characterization of the proteasome using native gel electrophoresis
    • DOI 10.1016/S0076-6879(05)98029-4, PII S0076687905980294, Ubiquitin and Protein Degradation (Part A)
    • Elsasser S, Schmidt M, Finley D (2005) Characterization of the proteasome using native gel electrophoresis. Methods Enzymol 398: 353-363. (Pubitemid 41578897)
    • (2005) Methods in Enzymology , vol.398 , pp. 353-363
    • Elsasser, S.1    Schmidt, M.2    Finley, D.3
  • 63
    • 20344370277 scopus 로고    scopus 로고
    • Purification of proteasomes, proteasome subcomplexes, and proteasome-associated proteins from budding yeast
    • Leggett DS, Glickman MH, Finley D (2005) Purification of proteasomes, proteasome subcomplexes, and proteasome-associated proteins from budding yeast. Methods Mol Biol 301: 57-70.
    • (2005) Methods Mol Biol , vol.301 , pp. 57-70
    • Leggett, D.S.1    Glickman, M.H.2    Finley, D.3
  • 64
    • 0023666139 scopus 로고
    • The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses
    • Finley D, Ozkaynak E, Varshavsky A (1987) The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48: 1035-1046.
    • (1987) Cell , vol.48 , pp. 1035-1046
    • Finley, D.1    Ozkaynak, E.2    Varshavsky, A.3
  • 65
    • 0344629427 scopus 로고    scopus 로고
    • Ubiquitin Depletion as a Key Mediator of Toxicity by Translational Inhibitors
    • DOI 10.1128/MCB.23.24.9251-9261.2003
    • Hanna J, Leggett DS, Finley D (2003) Ubiquitin depletion as a key mediator of toxicity by translational inhibitors. Mol Cell Biol 23: 9251-9261. (Pubitemid 37499812)
    • (2003) Molecular and Cellular Biology , vol.23 , Issue.24 , pp. 9251-9261
    • Hanna, J.1    Leggett, D.S.2    Finley, D.3
  • 66
    • 0034704217 scopus 로고    scopus 로고
    • The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B, on the 30S ribosomal subunit
    • DOI 10.1016/S0092-8674(00)00216-6
    • Brodersen DE, Clemons WM, Jr., Carter AP, Morgan-Warren RJ, Wimberly BT, et al. (2000) The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103: 1143-1154. (Pubitemid 32037400)
    • (2000) Cell , vol.103 , Issue.7 , pp. 1143-1154
    • Brodersen, D.E.1    Clemons Jr., W.M.2    Carter, A.P.3    Morgan-Warren, R.J.4    Wimberly, B.T.5    Ramakrishnan, V.6
  • 67
    • 0016017019 scopus 로고
    • Intracellular protein degradation in mammalian and bacterial cells
    • Goldberg AL, Dice JF (1974) Intracellular protein degradation in mammalian and bacterial cells. Annu Rev Biochem 43: 835-869.
    • (1974) Annu Rev Biochem , vol.43 , pp. 835-869
    • Goldberg, A.L.1    Dice, J.F.2
  • 68
    • 84873467908 scopus 로고    scopus 로고
    • Cotranslational response to proteotoxic stress by elongation pausing of ribosomes
    • Liu B, Han Y, Qian SB (2013) Cotranslational response to proteotoxic stress by elongation pausing of ribosomes. Mol Cell 49: 453-463.
    • (2013) Mol Cell , vol.49 , pp. 453-463
    • Liu, B.1    Han, Y.2    Qian, S.B.3
  • 69
    • 84873442839 scopus 로고    scopus 로고
    • Widespread regulation of translation by elongation pausing in heat shock
    • Shalgi R, Hurt JA, Krykbaeva I, Taipale M, Lindquist S, et al. (2013) Widespread regulation of translation by elongation pausing in heat shock. Mol Cell 49: 439-452.
    • (2013) Mol Cell , vol.49 , pp. 439-452
    • Shalgi, R.1    Hurt, J.A.2    Krykbaeva, I.3    Taipale, M.4    Lindquist, S.5
  • 70
    • 84871523350 scopus 로고    scopus 로고
    • A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress
    • Brandman O, Stewart-Ornstein J, Wong D, Larson A, Williams CC, et al. (2012) A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell 151: 1042-1054.
    • (2012) Cell , vol.151 , pp. 1042-1054
    • Brandman, O.1    Stewart-Ornstein, J.2    Wong, D.3    Larson, A.4    Williams, C.C.5
  • 71
    • 0030041781 scopus 로고    scopus 로고
    • Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast
    • Knop M, Finger A, Braun T, Hellmuth K, Wolf DH (1996) Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO J 15: 753-763. (Pubitemid 26064282)
    • (1996) EMBO Journal , vol.15 , Issue.4 , pp. 753-763
    • Knop, M.1    Finger, A.2    Braun, T.3    Hellmuth, K.4    Wolf, D.H.5
  • 72
    • 0029838640 scopus 로고    scopus 로고
    • ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway
    • Hiller MM, Finger A, Schweiger M, Wolf DH (1996) ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science 273: 1725-1728. (Pubitemid 26317791)
    • (1996) Science , vol.273 , Issue.5282 , pp. 1725-1728
    • Hiller, M.M.1    Finger, A.2    Schweiger, M.3    Wolf, D.H.4
  • 74
    • 33846107847 scopus 로고    scopus 로고
    • The cytoplasmic Hsp70 chaperone machinery subjects misfolded and endoplasmic reticulum import-incompetent proteins to degradation via the ubiquitin-proteasome system
    • DOI 10.1091/mbc.E06-04-0338
    • Park SH, Bolender N, Eisele F, Kostova Z, Takeuchi J, et al. (2007) The cytoplasmic Hsp70 chaperone machinery subjects misfolded and endoplasmic reticulum import-incompetent proteins to degradation via the ubiquitin-proteasome system. Mol Biol Cell 18: 153-165. (Pubitemid 46066717)
    • (2007) Molecular Biology of the Cell , vol.18 , Issue.1 , pp. 153-165
    • Park, S.-H.1    Bolender, N.2    Eisele, F.3    Kostova, Z.4    Takeuchi, J.5    Coffino, P.6    Wolf, D.H.7
  • 75
    • 34548548790 scopus 로고    scopus 로고
    • Modulation of Ubc4p/Ubc5p-mediated stress responses by the RING-finger-dependent ubiquitin-protein ligase Not4p in Saccharomyces cerevisiae
    • DOI 10.1534/genetics.106.060640
    • Mulder KW, Inagaki A, Cameroni E, Mousson F, Winkler GS, et al. (2007) Modulation of Ubc4p/Ubc5p-mediated stress responses by the RING-finger-dependent ubiquitin-protein ligase Not4p in Saccharomyces cerevisiae. Genetics 176: 181-192. (Pubitemid 350021018)
    • (2007) Genetics , vol.176 , Issue.1 , pp. 181-192
    • Mulder, K.W.1    Inagaki, A.2    Cameroni, E.3    Mousson, F.4    Winkler, G.S.5    De Virgilio, C.6    Collart, M.A.7    Timmers, H.Th.M.8
  • 76
    • 60849094787 scopus 로고    scopus 로고
    • Specific roles for the Ccr4-Not complex subunits in expression of the genome
    • Azzouz N, Panasenko OO, Deluen C, Hsieh J, Theiler G, et al. (2009) Specific roles for the Ccr4-Not complex subunits in expression of the genome. RNA 15: 377-383.
    • (2009) RNA , vol.15 , pp. 377-383
    • Azzouz, N.1    Panasenko, O.O.2    Deluen, C.3    Hsieh, J.4    Theiler, G.5
  • 77
    • 0035875115 scopus 로고    scopus 로고
    • The yeast POP2 gene encodes a nuclease involved in mRNA deadenylation
    • Daugeron MC, Mauxion F, Seraphin B (2001) The yeast POP2 gene encodes a nuclease involved in mRNA deadenylation. Nucleic Acids Res 29: 2448-2455. (Pubitemid 32600298)
    • (2001) Nucleic Acids Research , vol.29 , Issue.12 , pp. 2448-2455
    • Daugeron, M.-C.1    Mauxion, F.2    Seraphin, B.3
  • 78
    • 0345832225 scopus 로고    scopus 로고
    • X-ray structure and activity of the yeast Pop2 protein: A nuclease subunit of the mRNA deadenylase complex
    • DOI 10.1038/sj.embor.7400020
    • Thore S, Mauxion F, Seraphin B, Suck D (2003) X-ray structure and activity of the yeast Pop2 protein: a nuclease subunit of the mRNA deadenylase complex. EMBO Rep 4: 1150-1155. (Pubitemid 38088410)
    • (2003) EMBO Reports , vol.4 , Issue.12 , pp. 1150-1155
    • Thore, S.1    Mauxion, F.2    Seraphin, B.3    Suck, D.4
  • 79
  • 80
    • 0032579440 scopus 로고    scopus 로고
    • Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications
    • DOI 10.1002/(SICI)1097-0061(19980130)14:2<115::AID
    • Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, et al. (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14: 115-132. (Pubitemid 28062863)
    • (1998) Yeast , vol.14 , Issue.2 , pp. 115-132
    • Brachmann, C.B.1    Davies, A.2    Cost, G.J.3    Caputo, E.4    Li, J.5    Hieter, P.6    Boeke, J.D.7
  • 81
    • 33644555054 scopus 로고    scopus 로고
    • Proteome survey reveals modularity of the yeast cell machinery
    • Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, et al. (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440: 631-636.
    • (2006) Nature , vol.440 , pp. 631-636
    • Gavin, A.C.1    Aloy, P.2    Grandi, P.3    Krause, R.4    Boesche, M.5
  • 82
    • 0028268566 scopus 로고
    • NOT1(CDC39), NOT2(CDC36), NOT3, and NOT4 encode a global-negative regulator of transcription that differentially affects TATA-element utilization
    • Collart MA, Struhl K (1994) NOT1(CDC39), NOT2(CDC36), NOT3, and NOT4 encode a global-negative regulator of transcription that differentially affects TATA-element utilization. Genes Dev 8: 525-537. (Pubitemid 24086123)
    • (1994) Genes and Development , vol.8 , Issue.5 , pp. 525-537
    • Collart, M.A.1    Struhl, K.2
  • 83
    • 77956324567 scopus 로고    scopus 로고
    • Phosphorylation of Not4p functions parallel to BUR2 to regulate resistance to cellular stresses in Saccharomyces cerevisiae
    • Lau NC, Mulder KW, Brenkman AB, Mohammed S, van den Broek NJ, et al. (2010) Phosphorylation of Not4p functions parallel to BUR2 to regulate resistance to cellular stresses in Saccharomyces cerevisiae. PLoS One 5: e9864.
    • (2010) PLoS One , vol.5
    • Lau, N.C.1    Mulder, K.W.2    Brenkman, A.B.3    Mohammed, S.4    Van Den Broek, N.J.5
  • 84
    • 0027444947 scopus 로고
    • S. cerevisiae 26S protease mutants arrest cell division in G2/metaphase
    • DOI 10.1038/366358a0
    • Ghislain M, Udvardy A, Mann C (1993) S. cerevisiae 26S protease mutants arrest cell division in G2/metaphase. Nature 366: 358-362. (Pubitemid 23349365)
    • (1993) Nature , vol.366 , Issue.6453 , pp. 358-362
    • Ghislain, M.1    Udvardy, A.2    Mann, C.3
  • 85
    • 1842405431 scopus 로고    scopus 로고
    • Yeast cycloheximide-resistant crl mutants are proteasome mutants defective in protein degradation
    • Gerlinger UM, Guckel R, Hoffmann M, Wolf DH, Hilt W (1997) Yeast cycloheximide-resistant crl mutants are proteasome mutants defective in protein degradation. Mol Biol Cell 8: 2487-2499. (Pubitemid 27528216)
    • (1997) Molecular Biology of the Cell , vol.8 , Issue.12 , pp. 2487-2499
    • Gerlinger, U.-M.1    Guckel, R.2    Hoffmann, M.3    Wolf, D.H.4    Hilt, W.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.