메뉴 건너뛰기




Volumn 31, Issue 3, 2010, Pages 159-175

A novel regularization learning for single-view patterns: Multi-view discriminative regularization

Author keywords

Classification; Discriminative Regularization; Multi class problem; Multi View Learning; Single source patterns

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION);

EID: 84897999997     PISSN: 13704621     EISSN: 1573773X     Source Type: Journal    
DOI: 10.1007/s11063-010-9132-2     Document Type: Article
Times cited : (7)

References (50)
  • 2
    • 36448962045 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 1:1-48
    • (2006) J Mach Learn Res , vol.1 , pp. 1-48
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 3
    • 0242540474 scopus 로고    scopus 로고
    • MARK: A boosting algorithm for heterogeneous kernel models
    • Bennett KP, Momma M, Embrechts MJ (2002) MARK: a boosting algorithm for heterogeneous kernel models. In: SIGKDD, pp 24-31
    • (2002) SIGKDD , pp. 24-31
    • Bennett, K.P.1    Momma, M.2    Embrechts, M.J.3
  • 4
    • 12244300139 scopus 로고    scopus 로고
    • Column-generation boosting methods for mixture of kernels
    • Bi J, Zhang T, Bennett K (2004) Column-generation boosting methods for mixture of kernels. In: KDD, pp 521-526
    • (2004) KDD , pp. 521-526
    • Bi, J.1    Zhang, T.2    Bennett, K.3
  • 6
    • 0036161011 scopus 로고    scopus 로고
    • Choosingmultiple parameters for support vector machines
    • Chapelle O, Vapnik V, Bousquet O, Mukherjee S (2002) Choosingmultiple parameters for support vector machines. Mach Learn 46(1-3):131-159
    • (2002) Mach Learn , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 7
    • 0040675320 scopus 로고    scopus 로고
    • On different facets of regularization theory
    • Chen Z, Haykin S (2002) On different facets of regularization theory. Neural Comput 14(12):2791-2846
    • (2002) Neural Comput , vol.14 , Issue.12 , pp. 2791-2846
    • Chen, Z.1    Haykin, S.2
  • 8
    • 3442881906 scopus 로고    scopus 로고
    • Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization
    • Chen S, Hong X, Harris C (2004) Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization. IEEE Trans SystMan Cybern B 34(4):1708-1717
    • (2004) IEEE Trans SystMan Cybern B , vol.34 , Issue.4 , pp. 1708-1717
    • Chen, S.1    Hong, X.2    Harris, C.3
  • 10
    • 34547112821 scopus 로고    scopus 로고
    • Face recognition by regularized discriminant analysis
    • Dai D, Yuen P (2007) Face recognition by regularized discriminant analysis. IEEE Trans SystMan Cybern B 37(4):1080-1085
    • (2007) IEEE Trans SystMan Cybern B , vol.37 , Issue.4 , pp. 1080-1085
    • Dai, D.1    Yuen, P.2
  • 13
    • 62949110022 scopus 로고    scopus 로고
    • Object representation, sample size and data complexity
    • Basu M, Ho TK (eds), Springer, London
    • Duin R, Pekalska E (2006) Object representation, sample size and data complexity. In: Basu M, Ho TK (eds) Data complexity in pattern recognition. Springer, London, pp 25-47
    • (2006) Data Complexity in Pattern Recognition , pp. 25-47
    • Duin, R.1    Pekalska, E.2
  • 17
    • 0037272132 scopus 로고    scopus 로고
    • Regularization parameter estimation for feedforward neural networks
    • Guo P, Lyu M, Chen C (2003) Regularization parameter estimation for feedforward neural networks. IEEE Trans Syst Man Cybern B 33(1):35-44
    • (2003) IEEE Trans Syst Man Cybern B , vol.33 , Issue.1 , pp. 35-44
    • Guo, P.1    Lyu, M.2    Chen, C.3
  • 18
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • Hardoon D, Szedmak S, Shawe-Taylor J (2004) Canonical correlation analysis: an overview with application to learning methods. Neural Comput 16:2639-2664
    • (2004) Neural Comput , vol.16 , pp. 2639-2664
    • Hardoon, D.1    Szedmak, S.2    Shawe-Taylor, J.3
  • 20
    • 8844263749 scopus 로고    scopus 로고
    • A statistical framework for genomic data fusion
    • Lanckriet GRG, Bie TD, Cristianini N, JordanMI, NobleWS (2004) A statistical framework for genomic data fusion. Bioinformatics 20(16):2626-2635
    • (2004) Bioinformatics , vol.20 , Issue.16 , pp. 2626-2635
    • Grg, L.1    Bie, T.D.2    Cristianini, N.3    Noblews, J.4
  • 22
    • 40649086418 scopus 로고    scopus 로고
    • Incorporating prior knowledge in support vector machines for classification: A review
    • Lauer F, Bloch G (2007) Incorporating prior knowledge in support vector machines for classification: a review. Neurocomputing 71:1578-1594
    • (2007) Neurocomputing , vol.71 , pp. 1578-1594
    • Lauer, F.1    Bloch, G.2
  • 23
    • 33144458972 scopus 로고    scopus 로고
    • Efficient and robust feature extraction bymaximun margin criterion
    • Li H, Jiang T, Zhang K (2006) Efficient and robust feature extraction bymaximun margin criterion. IEEE Trans Neural Netw 17(1):157-165
    • (2006) IEEE Trans Neural Netw , vol.17 , Issue.1 , pp. 157-165
    • Li, H.1    Jiang, T.2    Zhang, K.3
  • 32
    • 0025056697 scopus 로고
    • Regularization algorithms for learning that are equivalent to multilayer networks
    • Poggio T, Girosi F (1990) Regularization algorithms for learning that are equivalent to multilayer networks. Science 247:978-982
    • (1990) Science , vol.247 , pp. 978-982
    • Poggio, T.1    Girosi, F.2
  • 33
    • 0242705996 scopus 로고    scopus 로고
    • The mathematics of learning: Dealing with data
    • Poggio T, Smale S (2003) The mathematics of learning: dealing with data. Notices AMS 50(5):537-544
    • (2003) Notices AMS , vol.50 , Issue.5 , pp. 537-544
    • Poggio, T.1    Smale, S.2
  • 39
    • 0000043665 scopus 로고
    • On solving incorrectly posed problems and method of regularization
    • Tikhonov A (1963) On solving incorrectly posed problems and method of regularization. Doklady Akademii Nauk USSR 151:501-504
    • (1963) Doklady Akademii Nauk USSR , vol.151 , pp. 501-504
    • Tikhonov, A.1
  • 44
  • 45
    • 15344339935 scopus 로고    scopus 로고
    • Optimizing the kernel in the empirical feature space
    • Xiong H, Swamy MNS, Ahmad MO (2005) Optimizing the kernel in the empirical feature space. IEEE Trans Neural Netw 16(2):460-474
    • (2005) IEEE Trans Neural Netw , vol.16 , Issue.2 , pp. 460-474
    • Xiong, H.1    Mns, S.2    Ahmad, M.O.3
  • 47
    • 51649109792 scopus 로고    scopus 로고
    • Discriminatively regularized least-squares classification
    • Xue H, Chen S, Yang Q (2009) Discriminatively regularized least-squares classification. Pattern Recognit 42:93-104
    • (2009) Pattern Recognit , vol.42 , pp. 93-104
    • Xue, H.1    Chen, S.2    Yang, Q.3
  • 49
    • 24944501407 scopus 로고    scopus 로고
    • Feature-correlation based multi-view detection
    • LNCS 3483
    • Zhang K, Tang J, Li J, Wang K (2005) Feature-correlation based multi-view detection. In: ICCSA 2005, LNCS 3483, pp 1222-1230
    • (2005) ICCSA 2005 , pp. 1222-1230
    • Zhang, K.1    Tang, J.2    Li, J.3    Wang, K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.