메뉴 건너뛰기




Volumn , Issue , 2002, Pages 24-31

MARK: A boosting algorithm for heterogeneous kernel models

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTATIONAL METHODS; DATA STRUCTURES; KNOWLEDGE BASED SYSTEMS; LEARNING SYSTEMS; REGRESSION ANALYSIS;

EID: 0242540474     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (82)

References (20)
  • 1
    • 0003408496 scopus 로고    scopus 로고
    • UCI repository of machine learning databases
    • C. L. Blake and C. J. Merz. UCI repository of machine learning databases, 1998. http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • (1998)
    • Blake, C.L.1    Merz, C.J.2
  • 2
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, 46(1/3):131, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 3
    • 0003554988 scopus 로고    scopus 로고
    • Support vector machines for large-scale regression problems
    • IDIAP-RR-00-17
    • R. Collobert and S. Bengio. Support vector machines for large-scale regression problems. IDIAP-RR-00-17, 2000.
    • (2000)
    • Collobert, R.1    Bengio, S.2
  • 4
    • 0003798635 scopus 로고    scopus 로고
    • An introduction to support vector machines and other kernel-based methods
    • N. Cristianini and J. Shawe-Taylor. An introduction to support vector machines and other kernel-based methods, 2000.
    • (2000)
    • Cristianini, N.1    Shawe-Taylor, J.2
  • 5
    • 0005003947 scopus 로고    scopus 로고
    • Leveraging for regression
    • N. Duffy and D. Helmbold. Leveraging for regression. In Proc. COLT, pages 208-219, 2000.
    • (2000) Proc. COLT , pp. 208-219
    • Duffy, N.1    Helmbold, D.2
  • 6
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • August
    • Y. Freund and R. Shapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139, August 1997.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Shapire, R.2
  • 7
    • 0003591748 scopus 로고    scopus 로고
    • Greedy function approximation
    • Technical report, Department of Statistics, Stanford University, February
    • J. Friedman. Greedy function approximation. Technical report, Department of Statistics, Stanford University, February 1999.
    • (1999)
    • Friedman, J.1
  • 11
    • 0032280255 scopus 로고    scopus 로고
    • The idea behind krylov methods
    • C. F. Ipsen and C. D. Meyer. The idea behind krylov methods. Amer. Math. Monthly, 105(10):899-99, 1998.
    • (1998) Amer. Math. Monthly , vol.105 , Issue.10 , pp. 889-899
    • Ipsen, C.F.1    Meyer, C.D.2
  • 12
    • 0002550596 scopus 로고    scopus 로고
    • Functional gradient techniques for combining hypotheses
    • In B. Schölkopf, A. Smola, P. Bartlett, and D. S. ans, editors; MIT Press
    • L. Mason, P. Bartlett, J. Baxter, and M. Frean. Functional gradient techniques for combining hypotheses. In B. Schölkopf, A. Smola, P. Bartlett, and D. S. ans, editors, Advances in Large Margin Classifiers. MIT Press, 2000.
    • (2000) Advances in Large Margin Classifiers
    • Mason, L.1    Bartlett, P.2    Baxter, J.3    Frean, M.4
  • 13
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for supervised learning
    • M. F. Möller. A scaled conjugate gradient algorithm for supervised learning. Neural Networks, 6:525-533, 1993.
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Möller, M.F.1
  • 15
    • 0004311187 scopus 로고    scopus 로고
    • Robust boosting via convex optimization: Theory and applications
    • PhD thesis, University of Potsdam, Department of Computer Science
    • G. Rätsch. Robust Boosting via Convex Optimization: Theory and Applications. PhD thesis, University of Potsdam, Department of Computer Science, 2002.
    • (2002)
    • Rätsch, G.1
  • 16
    • 0036643047 scopus 로고    scopus 로고
    • Sparse regression ensembles in infinite and finite hypothesis spaces
    • February
    • G. Rätsch, A. Demiriz, and K. Bennett. Sparse regression ensembles in infinite and finite hypothesis spaces. Machine Learning, 48((1-3)):193-221, February 2002.
    • (2002) Machine Learning , vol.48 , Issue.1-3 , pp. 193-221
    • Rätsch, G.1    Demiriz, A.2    Bennett, K.3
  • 19
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • J. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Neural Processing Letters, 9(3):293-300, 1999.
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.1    Vandewalle, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.