-
2
-
-
0040675320
-
On different facets of regularization theory
-
Chen Z., and Haykin S. On different facets of regularization theory. Neural Comput. 14 12 (2002) 2791-2846
-
(2002)
Neural Comput.
, vol.14
, Issue.12
, pp. 2791-2846
-
-
Chen, Z.1
Haykin, S.2
-
3
-
-
0036643079
-
Metric-based methods for adaptive model selection and regularization
-
Schuurmans D., and Southey F. Metric-based methods for adaptive model selection and regularization. Mach. Learn. 48 (2002) 51-84
-
(2002)
Mach. Learn.
, vol.48
, pp. 51-84
-
-
Schuurmans, D.1
Southey, F.2
-
4
-
-
51649123806
-
-
O. Bousquet, O. Chapelle, M. Hein, Measure based regularization, in: Neural Information Processing Symposium, Vancouver, British Columbia, Canada, 2003.
-
O. Bousquet, O. Chapelle, M. Hein, Measure based regularization, in: Neural Information Processing Symposium, Vancouver, British Columbia, Canada, 2003.
-
-
-
-
5
-
-
51649100323
-
-
M. Belkin, P. Niyogi, V. Sindhwani, Manifold regularization: a geometric framework for learning from examples, Technical Report TR-2004-06, Department of Computer Science, University of Chicago, 2004.
-
M. Belkin, P. Niyogi, V. Sindhwani, Manifold regularization: a geometric framework for learning from examples, Technical Report TR-2004-06, Department of Computer Science, University of Chicago, 2004.
-
-
-
-
6
-
-
23244434257
-
Learning the kernel function via regularization
-
Micchelli C.A., and Pontil M. Learning the kernel function via regularization. J. Mach. Learn. Res. 6 (2005) 1099-1125
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 1099-1125
-
-
Micchelli, C.A.1
Pontil, M.2
-
7
-
-
33947245952
-
Value regularization and fenchel duality
-
Rifkin R.M., and Lippert R.A. Value regularization and fenchel duality. J. Mach. Learn. Res. 8 (2007) 441-479
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 441-479
-
-
Rifkin, R.M.1
Lippert, R.A.2
-
8
-
-
14344256768
-
On information regularization
-
Corduneanu A., and Jaakkola T. On information regularization. UAI (2003)
-
(2003)
UAI
-
-
Corduneanu, A.1
Jaakkola, T.2
-
9
-
-
38349178797
-
Classifier learning with a new locality regularization method
-
Xue H., Chen S., and Zeng X. Classifier learning with a new locality regularization method. Pattern Recognition 41 5 (2008) 1496-1507
-
(2008)
Pattern Recognition
, vol.41
, Issue.5
, pp. 1496-1507
-
-
Xue, H.1
Chen, S.2
Zeng, X.3
-
10
-
-
33745465341
-
-
M. Belkin, P. Niyogi, V. Sindhwani, On mainfold regularization, in: Proceedings of the International Workshop on Artificial Intelligence and Statistics, 2005.
-
M. Belkin, P. Niyogi, V. Sindhwani, On mainfold regularization, in: Proceedings of the International Workshop on Artificial Intelligence and Statistics, 2005.
-
-
-
-
11
-
-
0025490985
-
-
T. Poggio, F. Girosi, Networks for approximation and learning, in: Proceedings of the IEEE, vol. 78, 1990, pp. 1481-1497.
-
T. Poggio, F. Girosi, Networks for approximation and learning, in: Proceedings of the IEEE, vol. 78, 1990, pp. 1481-1497.
-
-
-
-
12
-
-
0025056697
-
Regularization algorithms for learning that are equivalent to multilayer networks
-
Poggio T., and Girosi F. Regularization algorithms for learning that are equivalent to multilayer networks. Science 247 (1990) 978-982
-
(1990)
Science
, vol.247
, pp. 978-982
-
-
Poggio, T.1
Girosi, F.2
-
13
-
-
51649086153
-
-
A.R. Barron, Complexity regularization with application to artificial neural networks, in: G. Roussas (Eds.), Nonparametric Functional Estimation and Related Topics, 1991, pp. 561-576.
-
A.R. Barron, Complexity regularization with application to artificial neural networks, in: G. Roussas (Eds.), Nonparametric Functional Estimation and Related Topics, 1991, pp. 561-576.
-
-
-
-
14
-
-
33750730938
-
-
J.J. Pan, Q. Yang, H. Chang, D.-Y. Yeung. A manifold regularization approach to calibration reduction for sensor-network based tracking, in: Proceedings of the 21st National Conference on Artificial Intelligence (AAAI 06), 2006, pp. 988-993.
-
J.J. Pan, Q. Yang, H. Chang, D.-Y. Yeung. A manifold regularization approach to calibration reduction for sensor-network based tracking, in: Proceedings of the 21st National Conference on Artificial Intelligence (AAAI 06), 2006, pp. 988-993.
-
-
-
-
17
-
-
0000043665
-
On solving incorrectly posed problems and method of regularization
-
Tikhonov A.N. On solving incorrectly posed problems and method of regularization. Dokl. Akad. Nauk USSR 151 (1963) 501-504
-
(1963)
Dokl. Akad. Nauk USSR
, vol.151
, pp. 501-504
-
-
Tikhonov, A.N.1
-
20
-
-
51649108394
-
-
G. Wahba, Spline Models for Observational Data, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 59, Society for Industrial & Applied Mathematics, Philadelphia, PA, 1990.
-
G. Wahba, Spline Models for Observational Data, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 59, Society for Industrial & Applied Mathematics, Philadelphia, PA, 1990.
-
-
-
-
21
-
-
51649088257
-
-
R.M. Rifkin. Everything old is new again: a fresh look at historical approaches to machine learning, Ph.D. Thesis, Massachusetts Institute of Technology, 2002.
-
R.M. Rifkin. Everything old is new again: a fresh look at historical approaches to machine learning, Ph.D. Thesis, Massachusetts Institute of Technology, 2002.
-
-
-
-
22
-
-
0000249788
-
An equivalence between sparse approximation and support vector machines
-
Girosi F. An equivalence between sparse approximation and support vector machines. Neural Comput. 10 6 (1998) 1455-1480
-
(1998)
Neural Comput.
, vol.10
, Issue.6
, pp. 1455-1480
-
-
Girosi, F.1
-
23
-
-
84865131152
-
-
B. Scholkopf, R. Herbrich, A.J. Smola. A generalized representer theorem, in: Proceedings of the 14th Annual Conference on Computational Learning Theory, 2001, pp. 416-426.
-
B. Scholkopf, R. Herbrich, A.J. Smola. A generalized representer theorem, in: Proceedings of the 14th Annual Conference on Computational Learning Theory, 2001, pp. 416-426.
-
-
-
-
25
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens J.A.K., and Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 9 (1999) 293-300
-
(1999)
Neural Process. Lett.
, vol.9
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
26
-
-
0034419669
-
Regularization networks and support vector machines
-
Evgeniou T., Pontil M., and Poggio T. Regularization networks and support vector machines. Adv. Comput. Math. 13 1 (2000) 1-50
-
(2000)
Adv. Comput. Math.
, vol.13
, Issue.1
, pp. 1-50
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
27
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
Tenenbaum J., Silva V., and Langford J. A global geometric framework for nonlinear dimensionality reduction. Science 290 22 (2000) 2319-2323
-
(2000)
Science
, vol.290
, Issue.22
, pp. 2319-2323
-
-
Tenenbaum, J.1
Silva, V.2
Langford, J.3
-
28
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
Roweis S.T., and Saul L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 290 22 (2000) 2323-2326
-
(2000)
Science
, vol.290
, Issue.22
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
29
-
-
51649122556
-
-
M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral technique for embedding and clustering, in: Neural Information Processing Systems, vol.15, Vancouver, British Columbia, Canada, 2001.
-
M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral technique for embedding and clustering, in: Neural Information Processing Systems, vol.15, Vancouver, British Columbia, Canada, 2001.
-
-
-
-
30
-
-
33745881038
-
-
X. He, D. Cai, S. Yan, H. Zhang, Neighborhood preserving embedding, in: Proceedings of the 10th IEEE International Conference on Computer Vision, 2005.
-
X. He, D. Cai, S. Yan, H. Zhang, Neighborhood preserving embedding, in: Proceedings of the 10th IEEE International Conference on Computer Vision, 2005.
-
-
-
-
31
-
-
51649101395
-
-
X. He, P. Niyogi, Locality Preserving Projection, Neural Information Processing Symposium, Vancouver, British Columbia, Canada, 2003.
-
X. He, P. Niyogi, Locality Preserving Projection, Neural Information Processing Symposium, Vancouver, British Columbia, Canada, 2003.
-
-
-
-
32
-
-
84880899766
-
-
D. Cai, X. He, K. Zhou, J. Han, H. Bao, Locality sensitive discriminant analysis, in: International Joint Conference on Artificial Intelligence, 2007, pp. 708-713.
-
D. Cai, X. He, K. Zhou, J. Han, H. Bao, Locality sensitive discriminant analysis, in: International Joint Conference on Artificial Intelligence, 2007, pp. 708-713.
-
-
-
-
33
-
-
33947194180
-
Graph embedding and extensions: a general framework for dimensionality reduction
-
Yan S., Xu D., Zhang B., Zhang H., Yang Q., and Lin S. Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29 1 (2007) 40-51
-
(2007)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.29
, Issue.1
, pp. 40-51
-
-
Yan, S.1
Xu, D.2
Zhang, B.3
Zhang, H.4
Yang, Q.5
Lin, S.6
-
34
-
-
24644496298
-
-
H. Chen, H. Chang, T. Liu, Local discriminant embedding and its variants, in: International Conference on Computer Vision Pattern Recognition, 2005.
-
H. Chen, H. Chang, T. Liu, Local discriminant embedding and its variants, in: International Conference on Computer Vision Pattern Recognition, 2005.
-
-
-
-
35
-
-
51649094369
-
-
S. Szedmak, J. Shawe-Taylor, Muticlass learning at one-class complexity, Technical Report 1508, School of Electronics and Computer Science, Southampton, UK, 2005.
-
S. Szedmak, J. Shawe-Taylor, Muticlass learning at one-class complexity, Technical Report 1508, School of Electronics and Computer Science, Southampton, UK, 2005.
-
-
-
-
36
-
-
33144458972
-
Efficient and robust feature extraction by maximun margin criterion
-
Li H., Jiang T., and Zhang K. Efficient and robust feature extraction by maximun margin criterion. IEEE Trans. Neural Networks 17 1 (2006) 157-165
-
(2006)
IEEE Trans. Neural Networks
, vol.17
, Issue.1
, pp. 157-165
-
-
Li, H.1
Jiang, T.2
Zhang, K.3
-
38
-
-
51649106240
-
-
F.R.K. Chung, Spectral Graph Theory, in: Regional Conference Series in Mathematics, vol. 92, 1997.
-
F.R.K. Chung, Spectral Graph Theory, in: Regional Conference Series in Mathematics, vol. 92, 1997.
-
-
-
-
40
-
-
33747105621
-
-
R. Collobert, F. Sinz, J. Weston, L. Bottou, Trading convexity for scalability, in: International Conference on Machine Learning, 2006.
-
R. Collobert, F. Sinz, J. Weston, L. Bottou, Trading convexity for scalability, in: International Conference on Machine Learning, 2006.
-
-
-
-
41
-
-
33749240206
-
Multi-class pattern classification using neural networks
-
Ou G., and Murphey Y.L. Multi-class pattern classification using neural networks. Pattern Recognition 40 1 (2007) 4-18
-
(2007)
Pattern Recognition
, vol.40
, Issue.1
, pp. 4-18
-
-
Ou, G.1
Murphey, Y.L.2
-
42
-
-
34547995832
-
-
S. Asharaf, M.N. Murty, S.K. Shevade, Multiclass core vector machine, in: International Conference on Machine Learning, Corvallis, OR, 2007.
-
S. Asharaf, M.N. Murty, S.K. Shevade, Multiclass core vector machine, in: International Conference on Machine Learning, Corvallis, OR, 2007.
-
-
-
-
44
-
-
33644830072
-
Multisurface proximal support vector machine classification via generalized eigenvalues
-
Mangasarian O., and Wild E. Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE Trans. Pattern Anal. Mach. Intell. 28 1 (2006) 69-74
-
(2006)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.28
, Issue.1
, pp. 69-74
-
-
Mangasarian, O.1
Wild, E.2
-
48
-
-
51649129362
-
-
C.A. Micchelli, M. Pontil, Kernels for multi-task learning, in: Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2004.
-
C.A. Micchelli, M. Pontil, Kernels for multi-task learning, in: Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2004.
-
-
-
-
49
-
-
14544299611
-
On learning vector-valued functions
-
Micchelli C.A., and Pontil M. On learning vector-valued functions. Neural Comput. 17 (2005) 177-204
-
(2005)
Neural Comput.
, vol.17
, pp. 177-204
-
-
Micchelli, C.A.1
Pontil, M.2
-
50
-
-
2342517502
-
Think globally, fit locally: unsupervised learning of low dimensional manifolds
-
Saul L.K., and Roweis S.T. Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res. 4 (2003) 119-155
-
(2003)
J. Mach. Learn. Res.
, vol.4
, pp. 119-155
-
-
Saul, L.K.1
Roweis, S.T.2
-
51
-
-
24644474150
-
-
A. Ghodsi, J. Huang, F. Southey, D. Schuurmans, Tangent-corrected embedding, CVPR, 2005.
-
A. Ghodsi, J. Huang, F. Southey, D. Schuurmans, Tangent-corrected embedding, CVPR, 2005.
-
-
-
-
52
-
-
51649111011
-
-
A.M. Martinez, R. Benavente, The AR Face Database, CVC Technical Report #24, June, 1998.
-
A.M. Martinez, R. Benavente, The AR Face Database, CVC Technical Report #24, June, 1998.
-
-
-
-
53
-
-
51649112485
-
-
S.A. Nene, S.K. Nayar, H. Murase, Columbia Object Image Library (COIL-20), Technical Report CUCS-005-96, February, 1996.
-
S.A. Nene, S.K. Nayar, H. Murase, Columbia Object Image Library (COIL-20), Technical Report CUCS-005-96, February, 1996.
-
-
-
-
54
-
-
33847056269
-
Locality preserving CCA with applications to data visualization and pose estimation
-
Sun T., and Chen S. Locality preserving CCA with applications to data visualization and pose estimation. Image Vision Comput. 25 5 (2007) 531-543
-
(2007)
Image Vision Comput.
, vol.25
, Issue.5
, pp. 531-543
-
-
Sun, T.1
Chen, S.2
-
55
-
-
84864060454
-
-
A. Argyriou, M. Herbster, M. Pontil, Combing graph Laplacians for semi-supervised learning, Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2005.
-
A. Argyriou, M. Herbster, M. Pontil, Combing graph Laplacians for semi-supervised learning, Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2005.
-
-
-
-
56
-
-
1942517297
-
-
X.Z. Fern, C.E. Brodley, Random projection for high dimensional data clustering: a cluster ensemble approach, in: International Conference on Machine Learning, 2003, pp. 186-193.
-
X.Z. Fern, C.E. Brodley, Random projection for high dimensional data clustering: a cluster ensemble approach, in: International Conference on Machine Learning, 2003, pp. 186-193.
-
-
-
-
57
-
-
51649126816
-
-
X.Z. Fern, C.E. Brodley, Cluster ensembles for high dimensional clustering: an empirical study, Technical Report CS06-30-02, Oregon State University, 2006.
-
X.Z. Fern, C.E. Brodley, Cluster ensembles for high dimensional clustering: an empirical study, Technical Report CS06-30-02, Oregon State University, 2006.
-
-
-
-
58
-
-
51649118156
-
-
S. Durand, M. Nikolova, Stability of minimizers of regularized least squares objective functions I: study of the local behavior, Technical Report TSI-ENST, Paris, France, 2001.
-
S. Durand, M. Nikolova, Stability of minimizers of regularized least squares objective functions I: study of the local behavior, Technical Report TSI-ENST, Paris, France, 2001.
-
-
-
-
59
-
-
51649092215
-
-
S. Durand, M. Nikolova. Stability of minimizers of regularized least squares objective functions II: study of the global behavior, Technical Report TSI-ENST, Paris, France, 2001.
-
S. Durand, M. Nikolova. Stability of minimizers of regularized least squares objective functions II: study of the global behavior, Technical Report TSI-ENST, Paris, France, 2001.
-
-
-
-
60
-
-
33749630481
-
-
R.H. Chan, C.-W. Ho, C.-Y. Leung, M. Nikolova, Minimization of detail-preserving regularization functional by Newtons method with continuation, in: International Conference on Image Processing, 2005, pp. 125-128.
-
R.H. Chan, C.-W. Ho, C.-Y. Leung, M. Nikolova, Minimization of detail-preserving regularization functional by Newtons method with continuation, in: International Conference on Image Processing, 2005, pp. 125-128.
-
-
-
-
61
-
-
27744554422
-
Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization
-
Chan R.H., Ho C.-W., and Nikolova M. Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Trans. Image Process. 14 10 (2005) 1479-1485
-
(2005)
IEEE Trans. Image Process.
, vol.14
, Issue.10
, pp. 1479-1485
-
-
Chan, R.H.1
Ho, C.-W.2
Nikolova, M.3
-
62
-
-
51649101394
-
-
I.W. Tsang, J.T. Kwok, Large-scale sparsified manifold regularization, in: Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2006.
-
I.W. Tsang, J.T. Kwok, Large-scale sparsified manifold regularization, in: Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2006.
-
-
-
|