메뉴 건너뛰기




Volumn , Issue , 2002, Pages 553-560

Adaptive Scaling for Feature Selection in SVMs

Author keywords

[No Author keywords available]

Indexed keywords

SUPPORT VECTOR MACHINES;

EID: 85156255820     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (75)

References (9)
  • 1
    • 0002709342 scopus 로고    scopus 로고
    • Feature selection via concave minimization and support vector machines
    • Morgan Kaufmann, San Francisco, CA
    • P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimization and support vector machines. In Proc. 15th International Conf. on Machine Learning, pages 82-90. Morgan Kaufmann, San Francisco, CA, 1998.
    • (1998) Proc. 15th International Conf. on Machine Learning , pp. 82-90
    • Bradley, P. S.1    Mangasarian, O. L.2
  • 2
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of instability and stabilization in model selection
    • L. Breiman. Heuristics of instability and stabilization in model selection. The Annals of Statistics, 24(6):2350-2383, 1996.
    • (1996) The Annals of Statistics , vol.24 , Issue.6 , pp. 2350-2383
    • Breiman, L.1
  • 3
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, 46(1):131-159, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 4
    • 84898998301 scopus 로고    scopus 로고
    • Dynamically adapting kernels in support vector machines
    • M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, MIT Press
    • N. Cristianini, C. Campbell, and J. Shawe-Taylor. Dynamically adapting kernels in support vector machines. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Advances in Neural Information Processing Systems 11. MIT Press, 1999.
    • (1999) Advances in Neural Information Processing Systems , vol.11
    • Cristianini, N.1    Campbell, C.2    Shawe-Taylor, J.3
  • 5
    • 0003684449 scopus 로고    scopus 로고
    • The Elements of Statistical Learning: data mining, inference, and prediction
    • Springer
    • T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: data mining, inference, and prediction. Springer series in statistics. Springer, 2001.
    • (2001) Springer series in statistics
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.