메뉴 건너뛰기




Volumn 44, Issue 10-11, 2011, Pages 2669-2677

Partial AUC maximization in a linear combination of dichotomizers

Author keywords

Combination of classifiers; Partial AUC; ROC analysis

Indexed keywords

AREA UNDER THE ROC CURVE; BIOMETRIC DATABASE; CLASSIFICATION SYSTEM; CLASSIFIER COMBINATION; COMBINATION OF CLASSIFIERS; COMBINATION RULES; ERROR RATE; IMBALANCED CLASS; LINEAR COMBINATIONS; PARTIAL AUC; PERFORMANCE MEASURE; ROC ANALYSIS; ROC CURVES;

EID: 79958818046     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2011.03.022     Document Type: Article
Times cited : (28)

References (30)
  • 1
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, and randomization
    • T.G. Dietterich An experimental comparison of three methods for constructing ensembles of decision trees: bagging, and randomization Machine Learning 40 2 2000 139 158
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-158
    • Dietterich, T.G.1
  • 3
    • 0003503113 scopus 로고
    • On the link between error correlation and error reduction in decision tree ensembles
    • University of California Irvine, September
    • K.M. Ali, On the link between error correlation and error reduction in decision tree ensembles, Technical Report 95-38, Department of Information and Computer University of California Irvine, September 1995.
    • (1995) Technical Report 95-38, Department of Information and Computer
    • Ali, K.M.1
  • 4
    • 0029304867 scopus 로고
    • Improving model accuracy using optimal linear combinations of trained neural networks
    • S. Hashem, and B. Schmeiser Improving model accuracy using optimal linear combinations of trained neural networks IEEE Transactions on Neural Networks 6 1995 792 794
    • (1995) IEEE Transactions on Neural Networks , vol.6 , pp. 792-794
    • Hashem, S.1    Schmeiser, B.2
  • 5
    • 0030085913 scopus 로고    scopus 로고
    • Analysis of decision boundaries in linearly combined neural classifiers
    • DOI 10.1016/0031-3203(95)00085-2
    • K. Tumer, and J. Ghosh Analysis of decision boundaries in linearly combined neural classifiers Pattern Recognition 29 1996 341 348 (Pubitemid 126397840)
    • (1996) Pattern Recognition , vol.29 , Issue.2 , pp. 341-348
    • Tumer, K.1    Ghosh, J.2
  • 6
    • 0001562581 scopus 로고    scopus 로고
    • Linear and order statistics combiners for pattern classification
    • Springer-Verlag
    • K. Tumer, and J. Ghosh Linear and order statistics combiners for pattern classification Combining Artificial Neural Nets 1999 Springer-Verlag 127 155
    • (1999) Combining Artificial Neural Nets , pp. 127-155
    • Tumer, K.1    Ghosh, J.2
  • 7
    • 0033893813 scopus 로고    scopus 로고
    • Optimal linear combination of neural networks for improving classification performance
    • N. Ueda Optimal linear combination of neural networks for improving classification performance IEEE Transactions on Pattern Analysis and Machine Learning 22 2 2000 207 215
    • (2000) IEEE Transactions on Pattern Analysis and Machine Learning , vol.22 , Issue.2 , pp. 207-215
    • Ueda, N.1
  • 8
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • PII S0031320396001422
    • A.P. Bradley The use of the area under the ROC curve in the evaluation of machine learning algorithms Pattern Recognition 30 7 1997 1145 1159 (Pubitemid 127406521)
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 10
    • 33646590655 scopus 로고    scopus 로고
    • Exploiting AUC for optimal linear combinations of dichotomizers
    • C. Marrocco, M. Molinara, and F. Tortorella Exploiting AUC for optimal linear combinations of dichotomizers Pattern Recognition Letters 27 8 2006 900 907
    • (2006) Pattern Recognition Letters , vol.27 , Issue.8 , pp. 900-907
    • Marrocco, C.1    Molinara, M.2    Tortorella, F.3
  • 11
    • 14644390912 scopus 로고    scopus 로고
    • Using AUC and accuracy in evaluating learning algorithms
    • DOI 10.1109/TKDE.2005.50
    • J. Huang, and C.X. Ling Using AUC and accuracy in evaluating learning algorithms IEEE Transactions on Knowledge and Data Engineering 17 3 2005 299 310 (Pubitemid 40320164)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.3 , pp. 299-310
    • Huang, J.1    Ling, C.X.2
  • 13
    • 0041833610 scopus 로고    scopus 로고
    • Partial AUC estimation and regression
    • DOI 10.1111/1541-0420.00071
    • L.E. Dodd, and M.S. Pepe Partial AUC estimation and regression Biometrics 59 3 2003 614 623 (Pubitemid 37093400)
    • (2003) Biometrics , vol.59 , Issue.3 , pp. 614-623
    • Dodd, L.E.1    Pepe, M.S.2
  • 14
    • 0024370623 scopus 로고
    • Analyzing a portion of the ROC curve
    • D.K. McClish Analyzing a portion of the ROC curve Medical Decision Making 9 3 1989 190 195
    • (1989) Medical Decision Making , vol.9 , Issue.3 , pp. 190-195
    • McClish, D.K.1
  • 15
    • 0024385165 scopus 로고
    • On the statistical analysis of ROC curves
    • M.L. Thompson, and W. Zucchini On the statistical analysis of ROC curves Statistics in Medicine 8 10 1989 1277 1290 (Pubitemid 19255875)
    • (1989) Statistics in Medicine , vol.8 , Issue.10 , pp. 1277-1290
    • Thompson, M.L.1    Zucchini, W.2
  • 16
    • 0029824432 scopus 로고    scopus 로고
    • A receiver operating characteristic partial area index for highly sensitive diagnostic tests
    • Y. Jiang, C.E. Metz, and R.M. Nishikawa A receiver operating characteristic partial area index for highly sensitive diagnostic tests Radiology 201 3 1996 745 750 (Pubitemid 26392624)
    • (1996) Radiology , vol.201 , Issue.3 , pp. 745-750
    • Jiang, Y.1    Metz, C.E.2    Nishikawa, R.M.3
  • 17
    • 1542678937 scopus 로고    scopus 로고
    • A proposed design and analysis for comparing digital and analog mammography: Special receiver operating characteristic methods for cancer screening
    • S.G. Baker, and P.F. Pinsky A proposed design and analysis for comparing digital and analog mammography: special receiver operating characteristic methods for cancer screening Journal of the American Statistical Association 96 454 2001 421 428
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.454 , pp. 421-428
    • Baker, S.G.1    Pinsky, P.F.2
  • 18
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • T. Fawcett An introduction to ROC analysis Pattern Recognition Letters 27 8 2006 861 874
    • (2006) Pattern Recognition Letters , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 19
    • 0032525017 scopus 로고    scopus 로고
    • Maximum likelihood estimation of receiver operating characteristic (ROC) curves from continuously-distributed data
    • DOI 10.1002/(SICI)1097-0258(19980515)17:9<1033::AID-SIM784>3.0. CO;2-Z
    • C.E. Metz, B.A. Herman, and J.-H. Shen Maximum likelihood estimation of receiver operating characteristic curves from continuously-distributed data Statistics in Medicine 17 9 1998 1033 1053 (Pubitemid 28203832)
    • (1998) Statistics in Medicine , vol.17 , Issue.9 , pp. 1033-1053
    • Metz, C.E.1    Herman, B.A.2    Shen, J.-H.3
  • 20
    • 0033933685 scopus 로고    scopus 로고
    • An interpretation for the ROC curve and inference using GLM procedures
    • M.S. Pepe An interpretation for the ROC curve and inference using GLM procedures Biometrics 56 2 2004 352 359
    • (2004) Biometrics , vol.56 , Issue.2 , pp. 352-359
    • Pepe, M.S.1
  • 21
    • 0002322469 scopus 로고
    • On a test of whether one of two random variables is stochastically larger than the other
    • H.B. Mann, and D.R. Whitney On a test of whether one of two random variables is stochastically larger than the other Annals of Mathematical Statistics 18 1 1947 50 60
    • (1947) Annals of Mathematical Statistics , vol.18 , Issue.1 , pp. 50-60
    • Mann, H.B.1    Whitney, D.R.2
  • 22
    • 0035420134 scopus 로고    scopus 로고
    • Design of effective neural network ensembles for image classification purposes
    • DOI 10.1016/S0262-8856(01)00045-2, PII S0262885601000452
    • G. Giacinto, and F. Roli Design of effective neural network ensembles for image classification processes Image and Vision Computing 19 910 2001 699 707 (Pubitemid 32746163)
    • (2001) Image and Vision Computing , vol.19 , Issue.9-10 , pp. 699-707
    • Giacinto, G.1    Roli, F.2
  • 23
    • 58349085923 scopus 로고    scopus 로고
    • National Institute of Standards and Technology
    • National Institute of Standards and Technology - NIST Biometric Scores Set - release 1, 2004, available on 〈 http://www.itl.nist.gov/iad/894.03/ biometricscores 〉.
    • (2004) NIST Biometric Scores Set - Release 1
  • 24
    • 27744526744 scopus 로고    scopus 로고
    • Database, protocols and tools for evaluating score-level fusion algorithms in biometric authentication
    • DOI 10.1016/j.patcog.2005.06.011, PII S0031320305002347, Complexity Reduction
    • N. Poh, and S. Bengio Database, protocol and tools for evaluating score-level fusion algorithms in biometric authentication Pattern Recognition 39 2 2006 223 233 (Pubitemid 41586091)
    • (2006) Pattern Recognition , vol.39 , Issue.2 , pp. 223-233
    • Poh, N.1    Bengio, S.2
  • 28
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar Statistical comparisons of classifiers over multiple data sets Journal of Machine Learning Research 7 2006 1 30 (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 30
    • 0002282074 scopus 로고
    • A new measure of rank correlation
    • M.G. Kendall A new measure of rank correlation Biometrika 30 1938 81 93
    • (1938) Biometrika , vol.30 , pp. 81-93
    • Kendall, M.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.