메뉴 건너뛰기




Volumn 24, Issue 10, 2012, Pages 2789-2824

An extension of the receiver operating characteristic curve and AUC-Optimal classification

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; AREA UNDER THE CURVE; ARTICLE; AUTOMATED PATTERN RECOGNITION; HUMAN; PROBLEM SOLVING; RECEIVER OPERATING CHARACTERISTIC;

EID: 84872680082     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00336     Document Type: Article
Times cited : (24)

References (28)
  • 2
    • 0037413947 scopus 로고    scopus 로고
    • The central role of receiver operating characteristic (ROC) curves in evaluating tests for the early detection of cancer
    • Baker, S. G. (2003). The central role of receiver operating characteristic (ROC) curves in evaluating tests for the early detection of cancer. Journal of the National Cancer Institute, 95, 511-515.
    • (2003) Journal of the National Cancer Institute , vol.95 , pp. 511-515
    • Baker, S.G.1
  • 7
    • 84897965802 scopus 로고    scopus 로고
    • AUC optimization vs. error rate minimization
    • S. Thrün, L. K. Saul, & B. Schölkopf (Eds.), Cambridge, MA: MIT Press.
    • Cortes, C., & Mohri, M. (2004). AUC optimization vs. error rate minimization. In S. Thrün, L. K. Saul, & B. Schölkopf (Eds.), Advances in neural information processing systems, 16 (pp. 313-320). Cambridge, MA: MIT Press.
    • (2004) Advances in neural information processing systems , vol.16 , pp. 313-320
    • Cortes, C.1    Mohri, M.2
  • 9
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of online learning and an application to boosting
    • Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of online learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 10
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman, J. H., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting. Annals of Statistics, 28, 337-407.
    • (2000) Annals of Statistics , vol.28 , pp. 337-407
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 11
    • 28844439821 scopus 로고    scopus 로고
    • On data depth and distribution-free discriminant analysis using separating surfaces
    • Ghosh, A., & Chaudhuri, P. (2005). On data depth and distribution-free discriminant analysis using separating surfaces. Bernoulli, 11(1), 1-28.
    • (2005) Bernoulli , vol.11 , Issue.1 , pp. 1-28
    • Ghosh, A.1    Chaudhuri, P.2
  • 15
    • 77953243025 scopus 로고    scopus 로고
    • A boosting method for maximizing the partial area under the ROC curve
    • Komori, O., & Eguchi, S. (2010). A boosting method for maximizing the partial area under the ROC curve. BMC Bioinformatics, 11, 314.
    • (2010) BMC Bioinformatics , vol.11 , pp. 314
    • Komori, O.1    Eguchi, S.2
  • 17
    • 84898978212 scopus 로고    scopus 로고
    • Boosting algorithms as gradient descent in function space
    • S. A. Solla, T.K. Leen, & K.-R.Müller (Eds.), Cambridge, MA: MIT Press.
    • Mason, L., Baxter, J., Bartlett, P., & Frean, M. (1999). Boosting algorithms as gradient descent in function space. In S. A. Solla, T.K. Leen, & K.-R.Müller (Eds.), Advances in neural information processing systems, 12 (pp. 512-518). Cambridge, MA: MIT Press.
    • (1999) Advances in neural information processing systems , vol.12 , pp. 512-518
    • Mason, L.1    Baxter, J.2    Bartlett, P.3    Frean, M.4
  • 18
    • 2942627097 scopus 로고    scopus 로고
    • Information geometry of U-boost and Bregman divergence
    • Murata, N., Takenouchi, T., Kanamori, T., & Eguchi, S. (2004). Information geometry of U-boost and Bregman divergence. Neural Computation, 16(7), 1437-1481.
    • (2004) Neural Computation , vol.16 , Issue.7 , pp. 1437-1481
    • Murata, N.1    Takenouchi, T.2    Kanamori, T.3    Eguchi, S.4
  • 19
    • 38849091997 scopus 로고    scopus 로고
    • Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond
    • Pencina, M., D'Agostino Sr., R., D'Agostino Jr., R., & Vasan, R. (2008). Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond. Statistics in Medicine, 27(2), 157-172.
    • (2008) Statistics in Medicine , vol.27 , Issue.2 , pp. 157-172
    • Pencina, M.1    D'Agostino Sr., R.2    D'Agostino Jr., R.3    Vasan, R.4
  • 21
    • 0037368548 scopus 로고    scopus 로고
    • Selecting differentially expressed genes from microarray experiments
    • Pepe, M. S., Longton, G., Anderson, G. L., & Schummer, M. (2003). Selecting differentially expressed genes from microarray experiments. Biometrics, 59, 133-142.
    • (2003) Biometrics , vol.59 , pp. 133-142
    • Pepe, M.S.1    Longton, G.2    Anderson, G.L.3    Schummer, M.4
  • 22
    • 0010202247 scopus 로고    scopus 로고
    • Combining diagnostic test results to increase accuracy
    • Pepe, M. S., & Thompson, M. L. (2000). Combining diagnostic test results to increase accuracy. Biostatistics, 1, 123-140.
    • (2000) Biostatistics , vol.1 , pp. 123-140
    • Pepe, M.S.1    Thompson, M.L.2
  • 23
    • 33646018046 scopus 로고    scopus 로고
    • Evaluation of different biological data and computational classification methods for use in protein interaction prediction
    • Qi, Y., Joseph, Z. B., & Seetharaman, J. K. (2006). Evaluation of different biological data and computational classification methods for use in protein interaction prediction. Proteins: Structure, Function, and Bioinformatics, 63, 490-500.
    • (2006) Proteins: Structure, Function, and Bioinformatics , vol.63 , pp. 490-500
    • Qi, Y.1    Joseph, Z.B.2    Seetharaman, J.K.3
  • 25
    • 70450255147 scopus 로고    scopus 로고
    • Margin-based ranking and an equivalence between AdaBoost and RankBoost
    • Rudin, C., & Schapire, R. (2009).Margin-based ranking and an equivalence between AdaBoost and RankBoost. Journal of Machine Learning Research, 10, 2193-2232.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 2193-2232
    • Rudin, C.1    Schapire, R.2
  • 27
    • 45749120676 scopus 로고    scopus 로고
    • Robust boosting algorithm against mislabeling in multi-class problems
    • Takenouchi, T., Eguchi, S., Murata, T., & Kanamori, T. (2008). Robust boosting algorithm against mislabeling in multi-class problems. Neural Computation, 20(6), 1596-1630.
    • (2008) Neural Computation , vol.20 , Issue.6 , pp. 1596-1630
    • Takenouchi, T.1    Eguchi, S.2    Murata, T.3    Kanamori, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.