메뉴 건너뛰기




Volumn , Issue , 2011, Pages 839-850

The infinite push: A new support vector ranking algorithm that directly optimizes accuracy at the absolute top of the list

Author keywords

Area under ROC curve (AUC); Ranking; Support vector machines (SVMs)

Indexed keywords

QUADRATIC PROGRAMMING; RECOMMENDER SYSTEMS; SEARCH ENGINES; SUPPORT VECTOR MACHINES; VECTORS;

EID: 84880083510     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972818.72     Document Type: Conference Paper
Times cited : (66)

References (34)
  • 2
    • 77952768125 scopus 로고    scopus 로고
    • Ranking chemical structures for drug discovery: A new machine learning approach
    • S. Agarwal, D. Dugar, and S. Sengupta. Ranking chemical structures for drug discovery: A new machine learning approach. Journal of Chemical Information and Modeling, 50(5):716-731, 2010.
    • (2010) Journal of Chemical Information and Modeling , vol.50 , Issue.5 , pp. 716-731
    • Agarwal, S.1    Dugar, D.2    Sengupta, S.3
  • 4
    • 61749092782 scopus 로고    scopus 로고
    • Generalization bounds for ranking algorithms via algorithmic stability
    • S. Agarwal and P. Niyogi. Generalization bounds for ranking algorithms via algorithmic stability. Journal of Machine Learning Research, 10:441-474, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 441-474
    • Agarwal, S.1    Niyogi, P.2
  • 11
    • 77953642308 scopus 로고    scopus 로고
    • Efficient algorithms for ranking with SVMs
    • O. Chapelle and S. S. Keerthi. Efficient algorithms for ranking with SVMs. Information Retrieval Journal, 13(3):201-215, 2010.
    • (2010) Information Retrieval Journal , vol.13 , Issue.3 , pp. 201-215
    • Chapelle, O.1    Keerthi, S.S.2
  • 13
    • 77953646359 scopus 로고    scopus 로고
    • Gradient descent optimization of smoothed information retrieval metrics
    • O. Chapelle and M. Wu. Gradient descent optimization of smoothed information retrieval metrics. Information Retrieval Journal, 13(3):216-235, 2010.
    • (2010) Information Retrieval Journal , vol.13 , Issue.3 , pp. 216-235
    • Chapelle, O.1    Wu, M.2
  • 16
    • 55349114379 scopus 로고    scopus 로고
    • Statistical analysis of bayes optimal subset ranking
    • D. Cossock and T. Zhang. Statistical analysis of bayes optimal subset ranking. IEEE Transactions on Information Theory, 54(11):5140-5154, 2008.
    • (2008) IEEE Transactions on Information Theory , vol.54 , Issue.11 , pp. 5140-5154
    • Cossock, D.1    Zhang, T.2
  • 20
    • 44449107147 scopus 로고    scopus 로고
    • Support vector machine-based ranking significantly improves the effectiveness of similarity searching using 2D fingerprints and multiple reference compounds
    • H. Geppert, T. Horvath, T. Gärtner, S. Wrobel, and J. Bajorath. Support vector machine-based ranking significantly improves the effectiveness of similarity searching using 2D fingerprints and multiple reference compounds. Journal of Chemical Information and Modeling, 48:742-746, 2008.
    • (2008) Journal of Chemical Information and Modeling , vol.48 , pp. 742-746
    • Geppert, H.1    Horvath, T.2    Gärtner, T.3    Wrobel, S.4    Bajorath, J.5
  • 21
    • 66149090260 scopus 로고    scopus 로고
    • Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors
    • H. Geppert, J. Humrich, D. Stumpfe, T. Gärtner, and J. Bajorath. Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors. Journal of Chemical Information and Modeling, 49:767-779, 2009.
    • (2009) Journal of Chemical Information and Modeling , vol.49 , pp. 767-779
    • Geppert, H.1    Humrich, J.2    Stumpfe, D.3    Gärtner, T.4    Bajorath, J.5
  • 24
    • 20444410410 scopus 로고    scopus 로고
    • Virtual screening of molecular databases using a support vector machine
    • R. N. Jorissen and M. K. Gilson. Virtual screening of molecular databases using a support vector machine. Journal of Chemical Information and Modeling, 45:549-561, 2005.
    • (2005) Journal of Chemical Information and Modeling , vol.45 , pp. 549-561
    • Jorissen, R.N.1    Gilson, M.K.2
  • 26
    • 84880118967 scopus 로고    scopus 로고
    • OpenBabel. http://openbabel.org.
  • 29
    • 70450239631 scopus 로고    scopus 로고
    • The P-norm push: A simple convex ranking algorithm that concentrates at the top of the list
    • C. Rudin. The P-norm push: A simple convex ranking algorithm that concentrates at the top of the list. Journal of Machine Learning Research, 10:2233-2271, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 2233-2271
    • Rudin, C.1
  • 31
    • 65249163404 scopus 로고    scopus 로고
    • Searching for target-selective compounds using different combinations of multi-class support vector machine ranking methods, kernel functions, and fingerprint descriptors
    • A. M. Wassermann, H. Geppert, and J. Bajorath. Searching for target-selective compounds using different combinations of multi-class support vector machine ranking methods, kernel functions, and fingerprint descriptors. Journal of Chemical Information and Modeling, 49:582-592, 2009.
    • (2009) Journal of Chemical Information and Modeling , vol.49 , pp. 582-592
    • Wassermann, A.M.1    Geppert, H.2    Bajorath, J.3
  • 32
    • 0037363598 scopus 로고    scopus 로고
    • Comparison of ranking methods for virtual screening in lead-discovery programs
    • D. Wilton and P. Willett. Comparison of ranking methods for virtual screening in lead-discovery programs. Journal of Chemical Information and Computer Science, 43:469-474, 2003.
    • (2003) Journal of Chemical Information and Computer Science , vol.43 , pp. 469-474
    • Wilton, D.1    Willett, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.