메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1115-1125

Data-driven fault detection and diagnosis for complex industrial processes

Author keywords

Fault detection; Fault diagnosis; Partial least squares; Principal component analysis; Statistical process monitoring

Indexed keywords

ABNORMAL CHANGE; COMPLEX INDUSTRIAL PROCESS; DATA-DRIVEN; DIAGNOSIS METHODS; ECONOMIC LOSS; FAULT DETECTION AND DIAGNOSIS; FUTURE CHALLENGES; HIERARCHICAL OPTIMIZATION; INDUSTRIAL PROCESSS; MULTI-LEVEL; PARTIAL LEAST SQUARES; PRINCIPAL COMPONENTS; RIGOROUS ANALYSIS; SOFT FAULTS; STATISTICAL PROCESS MONITORING; STATISTICAL TOOLS;

EID: 79960904943     PISSN: 14746670     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3182/20090630-4-ES-2003.0408     Document Type: Conference Paper
Times cited : (89)

References (64)
  • 1
    • 67349245154 scopus 로고    scopus 로고
    • Reconstruction-based contribution for process monitoring
    • to appear
    • C. Alcala and S.J. Qin. Reconstruction-based Contribution for Process Monitoring. to appear in Automatica, 2009.
    • (2009) Automatica
    • Alcala, C.1    Qin, S.J.2
  • 2
    • 0032118892 scopus 로고    scopus 로고
    • Multiscale PCA with application to multivariate statistical process monitoring
    • B. R. Bakshi. Multiscale PCA with application to multi-variate statistical process monitoring. AIChE J., 44(7): 1596-1610, July 1998. (Pubitemid 128768960)
    • (1998) AIChE Journal , vol.44 , Issue.7 , pp. 1596-1610
    • Bakshi, B.R.1
  • 3
    • 0000235653 scopus 로고
    • Some theorems on quadratic forms applied in the study of analysis of variance problems, I. effect of inequality of variance in the one-way classification
    • G.E.P. Box. Some theorems on quadratic forms applied in the study of analysis of variance problems, I. effect of inequality of variance in the one-way classification. Ann. Math. Statistics, 25:290-302, 1954.
    • (1954) Ann. Math. Statistics , vol.25 , pp. 290-302
    • Box, G.E.P.1
  • 4
    • 33646731122 scopus 로고    scopus 로고
    • Multiblock principal component analysis based on a combined index for semiconductor fault detection and diagnosis
    • G. A. Cherry and S. J. Qin. Multiblock principal component analysis based on a combined index for semiconductor fault detection and diagnosis. IEEE Trans. Semic. Manuf., 19(2):159-172, 2006.
    • (2006) IEEE Trans. Semic. Manuf. , vol.19 , Issue.2 , pp. 159-172
    • Cherry, G.A.1    Qin, S.J.2
  • 5
    • 2342505830 scopus 로고    scopus 로고
    • Fault diagnosis based on Fisher discriminant analysis and support vector machines
    • DOI 10.1016/j.compchemeng.2003.10.002, PII S0098135403002618
    • Leo H. Chiang, Mark E. Kotanchek, and Arthur K. Kor-don. Fault diagnosis based on fisher discriminant analysis and support vector machines. Computer Chem. Eng., 28(8):1389-1401, 2004. (Pubitemid 38609090)
    • (2004) Computers and Chemical Engineering , vol.28 , Issue.8 , pp. 1389-1401
    • Chiang, L.H.1    Kotanchek, M.E.2    Kordon, A.K.3
  • 7
    • 10244238854 scopus 로고    scopus 로고
    • Fault identification for process monitoring using kernel principal component analysis
    • DOI 10.1016/j.ces.2004.08.007, PII S0009250904006013
    • J. H. Cho, J. M. Lee, S. W. Choi, D. Lee, and I. B. Lee. Fault identification for process monitoring using kernel principal component analysis. Chem. Eng. Sci., 60:279-288, 2005. (Pubitemid 39622624)
    • (2005) Chemical Engineering Science , vol.60 , Issue.1 , pp. 279-288
    • Cho, J.-H.1    Lee, J.-M.2    Choi, S.W.3    Lee, D.4    Lee, I.-B.5
  • 9
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysisbased on principal curves and neural networks
    • D. Dong and T. J. McAvoy. Nonlinear principal component analysisbased on principal curves and neural networks. Computer Chem. Eng., 20:65-78, 1996.
    • (1996) Computer Chem. Eng. , vol.20 , pp. 65-78
    • Dong, D.1    McAvoy, T.J.2
  • 10
    • 0032144398 scopus 로고    scopus 로고
    • Subspace approach to multidimensional fault identification and reconstruction
    • R. Dunia and S. J. Qin. Subspace approach to multidimensional fault identification and reconstruction. AIChE J., 44:1813-1831, 1998a. (Pubitemid 28540264)
    • (1998) AIChE Journal , vol.44 , Issue.8 , pp. 1813-1831
    • Dunia, R.1    Qin, S.J.2
  • 11
    • 0031644999 scopus 로고    scopus 로고
    • A unified geometric approach to process and sensor fault identification and reconstruction: The unidimensional fault case
    • PII S0098135497002779
    • R. Dunia and S. J. Qin. A unified geometric approach to process and sensor fault identification: the unidimen-sional fault case. Comput. Chem. Eng., 22:927-943, 1998b. (Pubitemid 128714172)
    • (1998) Computers and Chemical Engineering , vol.22 , Issue.7-8 , pp. 927-943
    • Dunia, R.1    Joe Qin, S.2
  • 12
    • 0030269512 scopus 로고    scopus 로고
    • Identification of faulty sensors using principal component analysis
    • R. Dunia, S. J. Qin, T. F. Edgar, and T. J. McAvoy. Identification of faulty sensors using principal component analysis. AIChE J., 42:2797-2812, 1996.
    • (1996) AIChE J. , vol.42 , pp. 2797-2812
    • Dunia, R.1    Qin, S.J.2    Edgar, T.F.3    McAvoy, T.J.4
  • 14
    • 0033083952 scopus 로고    scopus 로고
    • Isolation-enhanced principal component analysis
    • J. Gertler, W. Li, Y. Huang, and T.J. McAvoy. Isolation-enhanced principal component analysis. AIChE J., 45 (2):323-334, 1999.
    • (1999) AIChE J. , vol.45 , Issue.2 , pp. 323-334
    • Gertler, J.1    Li, W.2    Huang, Y.3    McAvoy, T.J.4
  • 15
    • 0141836624 scopus 로고    scopus 로고
    • Recent developments in controller performance monitoring and assessment techniques
    • Tuscon, Arizona CACHE
    • T. J. Harris and C. T. Seppala. Recent developments in controller performance monitoring and assessment techniques. In Chemical Process Control - CPC VI, pages 208-222, Tuscon, Arizona, 2002. CACHE.
    • (2002) Chemical Process Control - CPC , vol.6 , pp. 208-222
    • Harris, T.J.1    Seppala, T.C.2
  • 16
    • 0033080258 scopus 로고    scopus 로고
    • A review of performance monitoring and assessment technique for univariate and multivariate control systems
    • T. J. Harris, C. T. Seppala, and L. D. Desborough. A review of performance monitoring and assessment technique for univariate and multivariate control systems. Journal of Process Control, 9:1-17, 1999.
    • (1999) Journal of Process Control , vol.9 , pp. 1-17
    • Harris, T.J.1    Seppala, C.T.2    Desborough, L.D.3
  • 17
    • 0031163922 scopus 로고    scopus 로고
    • Good, bad or optimal? Performance assessment of MIMO processes
    • B. Huang, S.L. Shah, and K.Y. Kwok. Good, bad or optimal? performance assessment of MIMO processes. Automatica, 33(6):1175-1183, 1997.
    • (1997) Automatica , vol.33 , Issue.6 , pp. 1175-1183
    • Huang, B.1    Shah, S.L.2    Kwok, K.Y.3
  • 19
    • 0018503842 scopus 로고
    • Control procedures for residuals associated with principal component analysis
    • J. E. Jackson and G. Mudholkar. Control procedures for residuals associated with principal component analysis. Technometrics, 21:341-349, 1979. (Pubitemid 9472204)
    • (1979) Technometrics , vol.21 , Issue.3 , pp. 341-349
    • Jackson J.Edward1    Mudholkar Govind, S.2
  • 21
    • 0242274629 scopus 로고
    • Multivariate SPC methods for monitoring and diagnosing of process performance
    • T. Kourti and J. F. MacGregor. Multivariate SPC methods for monitoring and diagnosing of process performance. In Proceedings of PSE, pages 739-746, 1994.
    • (1994) Proceedings of PSE , pp. 739-746
    • Kourti, T.1    MacGregor, J.F.2
  • 22
    • 0030262558 scopus 로고    scopus 로고
    • Multivariate SPC methods for process and product monitoring
    • T. Kourti and J. F. MacGregor. Multivariate SPC methods for process and product monitoring. J. Qual. Tech., 28:409-428, 1996. (Pubitemid 126588616)
    • (1996) Journal of Quality Technology , vol.28 , Issue.4 , pp. 409-428
    • Kourti, T.1    MacGregor, J.F.2
  • 23
    • 0002171478 scopus 로고    scopus 로고
    • Controller performance monitoring and diagnosis: Experiences and challenges
    • J.C. Kantor, C.E. Garcia, and B.C. Carnahan, editors Tahoe, CA AIChE and CACHE
    • D.J. Kozub. Controller performance monitoring and diagnosis: experiences and challenges. In J.C. Kantor, C.E. Garcia, and B.C. Carnahan, editors, Fifth Int. Conf. on Chemical Process Control, pages 83-96, Tahoe, CA, 1996. AIChE and CACHE.
    • (1996) Fifth Int. Conf. on Chemical Process Control , pp. 83-96
    • Kozub, D.J.1
  • 24
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • Mark Kramer. Nonlinear principal component analysis using autoassociative neural networks. AIChE J., 37 (2):233-243, 1991.
    • (1991) AIChE J. , vol.37 , Issue.2 , pp. 233-243
    • Kramer, M.1
  • 25
    • 0026108818 scopus 로고
    • Multivari-ate statistical monitoring of processes
    • J.V. Kresta, J. F. MacGregor, and T. E. Marlin. Multivari-ate statistical monitoring of processes. Can. J. Chem. Eng., 69(1):35-47, 1991.
    • (1991) Can. J. Chem. Eng. , vol.69 , Issue.1 , pp. 35-47
    • Kresta, J.V.1    MacGregor, J.F.2    Marlin, T.E.3
  • 26
    • 0028892168 scopus 로고
    • Disturbance detection and isolation by dynamic principal component analysis
    • W. Ku, R.H. Storer, and C. Georgakis. Disturbance detection and isolation by dynamic principal component analysis. Chemometrics Intell. Lab. Syst., 30:179, 1995.
    • (1995) Chemometrics Intell. Lab. Syst. , vol.30 , pp. 179
    • Ku, W.1    Storer, R.H.2    Georgakis, C.3
  • 27
    • 0035546347 scopus 로고    scopus 로고
    • Consistent dynamic PCA based on errors-in-variables subspace identification
    • DOI 10.1016/S0959-1524(00)00041-X, PII S095915240000041X
    • W. Li and S.J. Qin. Consistent dynamic PCA based on errors-in-variables subspace identification. J. Proc. Cont., 11:661-678, 2001. (Pubitemid 32951361)
    • (2001) Journal of Process Control , vol.11 , Issue.6 , pp. 661-678
    • Li, W.1    Qin S.Joe2
  • 28
  • 29
    • 0343325877 scopus 로고
    • Statistical process control of multivariate processes
    • J. F. MacGregor. Statistical process control of multivariate processes. In Preprints IFAC ADCHEM, 1994.
    • (1994) Preprints IFAC ADCHEM
    • MacGregor, J.F.1
  • 30
    • 0028424619 scopus 로고
    • Process monitoring and diagnosis by multiblock PLS methods
    • J. F. MacGregor, C. Jaeckle, C. Kiparissides, and M. Koutoudi. Process monitoring and diagnosis by multiblock PLS methods. AIChE J., 40:826-828, 1994.
    • (1994) AIChE J. , vol.40 , pp. 826-828
    • MacGregor, J.F.1    Jaeckle, C.2    Kiparissides, C.3    Koutoudi, M.4
  • 32
    • 18144403568 scopus 로고    scopus 로고
    • Fault diagnosis in the feedback-invariant subspace of closed-loop systems
    • DOI 10.1021/ie049570o
    • C. A. McNabb and S. Joe Qin. Fault diagnosis in the control invariant subspace of closed-loop systems. Ind. Eng. Chem. Res., 44:2359-2368, 2005. (Pubitemid 40622235)
    • (2005) Industrial and Engineering Chemistry Research , vol.44 , Issue.8 , pp. 2359-2368
    • McNabb, C.A.1    Qin, S.J.2
  • 33
    • 0003216796 scopus 로고
    • Contribution plots: The missing link in multivariate quality control
    • Milwaukee, WI
    • P. Miller, R.E. Swanson, and C.F. Heckler. Contribution plots: the missing link in multivariate quality control. In Fall Conf. of the ASQC and ASA, 1993. Milwaukee, WI.
    • (1993) Fall Conf. of the ASQC and ASA
    • Miller, P.1    Swanson, R.E.2    Heckler, C.F.3
  • 34
    • 0037106519 scopus 로고    scopus 로고
    • Multivariate process monitoring and fault identification using multi-scale PCA
    • M. Misra, S.J. Qin, H. Yue, and C. Ling. Multivariate process monitoring and fault identification using multi-scale PCA. Comput. Chem. Eng., 26:1281-1293, 2002.
    • (2002) Comput. Chem. Eng. , vol.26 , pp. 1281-1293
    • Misra, M.1    Qin, S.J.2    Yue, H.3    Ling, C.4
  • 35
    • 0031208457 scopus 로고    scopus 로고
    • Statistical monitoring of multivari-ate dynamic processes with state space models
    • A. Negiz and A. Cinar. Statistical monitoring of multivari-ate dynamic processes with state space models. AIChE J., 43:2002-2020, 1997.
    • (1997) AIChE J. , vol.43 , pp. 2002-2020
    • Negiz, A.1    Cinar, A.2
  • 36
    • 0002970413 scopus 로고    scopus 로고
    • Statistical monitoring of batch processes
    • Anaheim, CA, August
    • P. Nomikos. Statistical monitoring of batch processes. In Preprints of Joint Statistical Meeting, Anaheim, CA, August 1997.
    • (1997) Preprints of Joint Statistical Meeting
    • Nomikos, P.1
  • 37
    • 0029252734 scopus 로고
    • Multivariate SPC charts for monitoring batch processes
    • P. Nomikos and J.F. MacGregor. Multivariate SPC charts for monitoring batch processes. Technometrics, 37(1): 41-59, 1995.
    • (1995) Technometrics , vol.37 , Issue.1 , pp. 41-59
    • Nomikos, P.1    MacGregor, J.F.2
  • 39
    • 0035421343 scopus 로고    scopus 로고
    • Sensor validation and process fault diagnosis for FCC units under MPC feedback
    • DOI 10.1016/S0967-0661(01)00055-7, PII S0967066101000557, Advanced Control of Chemical Processes
    • T.N. Pranatyasto and S.J. Qin. Sensor validation and process fault diagnosis for FCC units under MPC feedback. Control Engineering Practice, 9:877-888, 2001. (Pubitemid 32774394)
    • (2001) Control Engineering Practice , vol.9 , Issue.8 , pp. 877-888
    • Pranatyasto, T.N.1    Qin, S.J.2
  • 40
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • PII S0098135497002627
    • S. J. Qin. Recursive PLS algorithms for adaptive data modeling. Comput. Chem. Eng., 23:503-514, 1998a. (Pubitemid 128714151)
    • (1998) Computers and Chemical Engineering , vol.22 , Issue.4-5 , pp. 503-514
    • Qin, S.J.1
  • 41
    • 0001282938 scopus 로고    scopus 로고
    • On unifying multiblock analysis with application to decentralized process monitoring
    • DOI 10.1002/cem.667
    • S. J. Qin, S. Valle-Cervantes, and M. Piovoso. On unifying multi-block analysis with applications to decentralized process monitoring. J. Chemometrics, 15:715-742, 2001. (Pubitemid 33608039)
    • (2001) Journal of Chemometrics , vol.15 , Issue.9 , pp. 715-742
    • Qin, S.J.1    Valle, S.2    Piovoso, M.J.3
  • 42
    • 0032469932 scopus 로고    scopus 로고
    • Control performance monitoring - A review and assessment
    • S.J. Qin. Control performance monitoring - a review and assessment. Comput. Chem. Eng., 23:178-186, 1998b.
    • (1998) Comput. Chem. Eng. , vol.23 , pp. 178-186
    • Qin, S.J.1
  • 43
    • 0033198809 scopus 로고    scopus 로고
    • Detection, identification, and reconstruction of faulty sensors with maximized sensitivity
    • S.J. Qin and W. Li. Detection, identification and reconstruction of faulty sensors with maximized sensitivity. AIChE J., 45:1963-1976, 1999. (Pubitemid 29446531)
    • (1999) AIChE Journal , vol.45 , Issue.9 , pp. 1963-1976
    • Qin, S.J.1    Li, W.2
  • 44
    • 0001212550 scopus 로고    scopus 로고
    • Detection and identification of faulty sensors in dynamic processes
    • DOI 10.1002/aic.690470711
    • S.J. Qin and W. Li. Detection and identification of faulty sensors in dynamic processes. AIChE J., 47(7):1581-1593, 2001. (Pubitemid 36858841)
    • (2001) AIChE Journal , vol.47 , Issue.7 , pp. 1581-1593
    • Qin, S.J.1    Li, W.2
  • 45
    • 0026853320 scopus 로고
    • Nonlinear PLS modeling using neural networks
    • DOI 10.1016/0098-1354(92)80055-E
    • S.J. Qin and T. McAvoy. Nonlinear PLS modeling using neural networks. Comput. Chem. Eng., 16(4):379-391, 1992. (Pubitemid 23560966)
    • (1992) Computers and Chemical Engineering , vol.16 , Issue.4 , pp. 379-391
    • Qin, S.J.1    McAvoy, T.J.2
  • 46
    • 0030083996 scopus 로고    scopus 로고
    • Building nonlinear FIR models via a neural net PLS approach
    • S.J. Qin and T.J. McAvoy. Building nonlinear FIR models via a neural net PLS approach. compche, 20:147-159, 1996.
    • (1996) Compche , vol.20 , pp. 147-159
    • Qin, S.J.1    McAvoy, T.J.2
  • 47
    • 0030127409 scopus 로고    scopus 로고
    • Statistical Process Monitoring and Disturbance Diagnosis in Multivariable Continuous Processes
    • A. Raich and A. Cinar. Statistical process monitoring and disturbance diagnosis in multivariate continuous processes. AIChE J., 42:995-1009, 1996a. (Pubitemid 126468139)
    • (1996) AIChE Journal , vol.42 , Issue.4 , pp. 995-1009
    • Raich, A.1    Cinar, A.2
  • 48
    • 0002776103 scopus 로고    scopus 로고
    • Process disturbance diagnosis by statistical distance and angle measures
    • San Francisco
    • A. C. Raich and A. Cinar. Process disturbance diagnosis by statistical distance and angle measures. In Proceedings of IFAC Congress, volume N, pages 283-288, 1996b. San Francisco.
    • (1996) Proceedings of IFAC Congress , vol.N , pp. 283-288
    • Raich, A.C.1    Cinar, A.2
  • 49
    • 0035142851 scopus 로고    scopus 로고
    • Comments on three-way analyses used for batch process data
    • A. Smilde. Comments on three-way analyses used for batch process data. J. Chemometrics, 15:15-27, 2001.
    • (2001) J. Chemometrics , vol.15 , pp. 15-27
    • Smilde, A.1
  • 50
    • 0033559979 scopus 로고    scopus 로고
    • Distinguishing between process upsets and sensor malfunctions using sensor redundancy
    • DOI 10.1016/S0169-7439(98)00180-4, PII S0169743998001804
    • C.L. Stork and B.R. Kowalski. Distinguishing between process upsets and sensor malfunctions using sensor redundancy. Chemometrics Intell. Lab. Syst., 46:117-131, 1999. (Pubitemid 29098980)
    • (1999) Chemometrics and Intelligent Laboratory Systems , vol.46 , Issue.2 , pp. 117-131
    • Stork, C.L.1    Kowalski, B.R.2
  • 51
    • 0029342346 scopus 로고
    • Detection of gross errors in data reconciliation by principal component analysis
    • H. Tong and C. M. Crowe. Detection of gross errors in data reconciliation by principal component analysis. AIChE J., 41:1712-1722, 1995.
    • (1995) AIChE J. , vol.41 , pp. 1712-1722
    • Tong, H.1    Crowe, C.M.2
  • 53
    • 0036778659 scopus 로고    scopus 로고
    • A new subspace identification approach based on principal component analysis
    • Jin Wang and S. Joe Qin. A new subspace identification approach based on principal component analysis. J. Proc. Cont., 12:841-855, 2002.
    • (2002) J. Proc. Cont. , vol.12 , pp. 841-855
    • Jin, W.1    Joe Qin, S.2
  • 54
    • 8744317826 scopus 로고    scopus 로고
    • Process monitoring based on canonical variate analysis
    • Banff, Canada, June 9-11
    • Y. Wang, D. Seborg, and W. Larimore. Process monitoring based on canonical variate analysis. In Proc. of ADCHEM 97, pages 523-528, Banff, Canada, June 9-11 1997.
    • (1997) Proc. of ADCHEM 97 , pp. 523-528
    • Wang, Y.1    Seborg, D.2    Larimore, W.3
  • 55
    • 0000736392 scopus 로고    scopus 로고
    • Analysis of multiblock and hierarchical PCA and PLS models
    • J. A. Westerhuis, T. Kourti, and J.F. MacGregor. Analysis of multiblock and hierarchical PCA and PLS models. J. Chemometrics, 12:301-321, 1998. (Pubitemid 128480027)
    • (1998) Journal of Chemometrics , vol.12 , Issue.5 , pp. 301-321
    • Westerhuis, J.A.1    Kourti, T.2    Macgregor, J.F.3
  • 56
    • 0002878789 scopus 로고
    • Recent advances in multi-variate statistical process control: Improving robustness and sensitivity
    • B. M. Wise and N. L. Ricker. Recent advances in multi-variate statistical process control: Improving robustness and sensitivity. In Proceedings of the IFAC. ADCHEM Symposium, pages 125-130, 1991.
    • (1991) Proceedings of the IFAC. ADCHEM Symposium , pp. 125-130
    • Wise, B.M.1    Ricker, L.N.2
  • 58
    • 0025514444 scopus 로고
    • Theoretical basis for the use of principal component models for monitoring multivariate processes
    • B.M. Wise, N. L. Ricker, D. F. Veltkamp, and B. R. Kowal-ski. A theoretical basis for the use of principal component models for monitoring multivariate processes. Process Control and Quality, 1:41-51, 1990. (Pubitemid 21671536)
    • (1990) Process Control and Quality , vol.1 , Issue.1 , pp. 41-51
    • Wise, B.M.1    Ricker, N.L.2    Veltkamp, D.F.3    Kowalski, B.R.4
  • 59
    • 0034282185 scopus 로고    scopus 로고
    • Statistical and causal model-based approaches to fault detection and isolation
    • S. Yoon and J.F. MacGregor. Statistical and causal model-based approaches to fault detection and isolation. AIChE J., 46:1813-1824, 2000.
    • (2000) AIChE J. , vol.46 , pp. 1813-1824
    • Yoon, S.1    MacGregor, J.F.2
  • 60
    • 0035427805 scopus 로고    scopus 로고
    • Fault diagnosis with multivariate statistical models part I: Using steady state fault signatures
    • DOI 10.1016/S0959-1524(00)00008-1, PII S0959152400000081
    • S. Yoon and J.F. MacGregor. Fault diagnosis with multi-variate statistical models, part I: using steady state fault signatures. J. Proc. Cont., 11:387-400, 2001. (Pubitemid 32408863)
    • (2001) Journal of Process Control , vol.11 , Issue.4 , pp. 387-400
    • Yoon, S.1    MacGregor, J.F.2
  • 61
    • 0035802262 scopus 로고    scopus 로고
    • Reconstruction-based fault identification using a combined index
    • H. Yue and S. J. Qin. Reconstruction based fault identification using a combined index. Ind. Eng. Chem. Res., 40:4403-4414, 2001. (Pubitemid 33009817)
    • (2001) Industrial and Engineering Chemistry Research , vol.40 , Issue.20 , pp. 4403-4414
    • Yue, H.H.1    Qin, S.J.2
  • 62
    • 79960898828 scopus 로고    scopus 로고
    • Fault reconstruction and identification for industrial processes
    • Miami, FL, Nov.
    • H. Yue and S.J. Qin. Fault reconstruction and identification for industrial processes. In AIChE Annual Meeting, Miami, FL, Nov. 1998.
    • (1998) AIChE Annual Meeting
    • Yue, H.1    Qin, S.J.2
  • 64
    • 33746005625 scopus 로고    scopus 로고
    • Online monitoring of steel casting processes using multivariate statistical technologies: From continuous to transitional operations
    • DOI 10.1016/j.jprocont.2006.03.005, PII S0959152406000412
    • Yale Zhang and Michael S. Dudzic. Online monitoring of steel casting processes using multivariate statistical technologies: From continuous to transitional operations. J. Proc. Cont., 16(8):819-829, 2006. (Pubitemid 44067449)
    • (2006) Journal of Process Control , vol.16 , Issue.8 , pp. 819-829
    • Zhang, Y.1    Dudzic, M.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.