-
1
-
-
77956040612
-
From microfluidic applications to nanofluidic phenomena
-
10.1039/c001349h
-
van den Berg A, Craighead H G and Yang P D 2010 From microfluidic applications to nanofluidic phenomena Chem. Soc. Rev. 39 899-900
-
(2010)
Chem. Soc. Rev.
, vol.39
, pp. 899-900
-
-
Van Den Berg, A.1
Craighead, H.G.2
Yang, P.D.3
-
2
-
-
53649108801
-
The potential and challenges of nanopore sequencing
-
10.1038/nbt.1495 1087-0156
-
Branton D et al 2008 The potential and challenges of nanopore sequencing Nature Biotechnol. 26 1146-53
-
(2008)
Nature Biotechnol.
, vol.26
, pp. 1146-1153
-
-
Branton, D.1
-
3
-
-
33645513029
-
Field-effect control of protein transport in a nanofluidic transistor circuit
-
10.1063/1.2186967 123114
-
Karnik R, Castelino K and Majumdar A 2006 Field-effect control of protein transport in a nanofluidic transistor circuit Appl. Phys. Lett. 88 123114
-
(2006)
Appl. Phys. Lett.
, vol.88
-
-
Karnik, R.1
Castelino, K.2
Majumdar, A.3
-
4
-
-
77950809846
-
Direct seawater desalination by ion concentration polarization
-
10.1038/nnano.2010.34 1748-3387
-
Kim S J, Ko S H, Kang K H and Han J 2010 Direct seawater desalination by ion concentration polarization Nature Nanotechnol. 5 297-301
-
(2010)
Nature Nanotechnol.
, vol.5
, pp. 297-301
-
-
Kim, S.J.1
Ko, S.H.2
Kang, K.H.3
Han, J.4
-
5
-
-
77951076270
-
Energy harvesting with single-ion-selective nanopores: A concentration-gradient-driven nanofluidic power source
-
10.1002/adfm.200902312
-
Guo W, Cao L X, Xia J C, Nie F Q, Ma W, Xue J M, Song Y L, Zhu D B, Wang Y G and Jiang L 2010 Energy harvesting with single-ion-selective nanopores: a concentration-gradient-driven nanofluidic power source Adv. Funct. Mater. 20 1339-44
-
(2010)
Adv. Funct. Mater.
, vol.20
, pp. 1339-1344
-
-
Guo, W.1
Cao, L.X.2
Xia, J.C.3
Nie, F.Q.4
Ma, W.5
Xue, J.M.6
Song, Y.L.7
Zhu, D.B.8
Wang, Y.G.9
Jiang, L.10
-
6
-
-
33750501126
-
Electrokinetic energy conversion efficiency in nanofluidic channels
-
10.1021/nl061524l
-
van der Heyden F H J, Bonthuis D J, Stein D, Meyer C and Dekker C 2006 Electrokinetic energy conversion efficiency in nanofluidic channels Nano Lett. 6 2232-7
-
(2006)
Nano Lett.
, vol.6
, pp. 2232-2237
-
-
Van Der Heyden, F.H.J.1
Bonthuis, D.J.2
Stein, D.3
Meyer, C.4
Dekker, C.5
-
8
-
-
41849096397
-
Nanofluidic devices and their applications
-
10.1021/ac702296u
-
Abgrall P and Nguyen N T 2008 Nanofluidic devices and their applications Anal. Chem. 80 2326-41
-
(2008)
Anal. Chem.
, vol.80
, pp. 2326-2341
-
-
Abgrall, P.1
Nguyen, N.T.2
-
9
-
-
44649143192
-
Nanofluidics: Systems and applications
-
10.1109/JSEN.2008.918758 1530-437X
-
Prakash S, Piruska A, Gatimu E N, Bohn P W, Sweedler J V and Shannon M A 2008 Nanofluidics: systems and applications IEEE Sensors J. 8 441-50
-
(2008)
IEEE Sensors J.
, vol.8
, pp. 441-450
-
-
Prakash, S.1
Piruska, A.2
Gatimu, E.N.3
Bohn, P.W.4
Sweedler, J.V.5
Shannon, M.A.6
-
11
-
-
49449090221
-
Transport phenomena in nanofluidics
-
10.1103/RevModPhys.80.839 0034-6861
-
Schoch R B, Han J Y and Renaud P 2008 Transport phenomena in nanofluidics Rev. Mod. Phys. 80 839-83
-
(2008)
Rev. Mod. Phys.
, vol.80
, pp. 839-883
-
-
Schoch, R.B.1
Han, J.Y.2
Renaud, P.3
-
12
-
-
15244346977
-
Voltage-gated sodium and calcium channels in nerve, muscle, and heart
-
10.1109/TNB.2004.842500
-
French R J and Zamponi G W 2005 Voltage-gated sodium and calcium channels in nerve, muscle, and heart IEEE Trans. Nanobiosci. 4 58-69
-
(2005)
IEEE Trans. Nanobiosci.
, vol.4
, pp. 58-69
-
-
French, R.J.1
Zamponi, G.W.2
-
13
-
-
0038329289
-
Life's transistors
-
10.1038/423021a
-
Sigworth F J 2003 Life's transistors Nature 423 21-2
-
(2003)
Nature
, vol.423
, pp. 21-22
-
-
Sigworth, F.J.1
-
15
-
-
0001166734
-
Zur theorie der elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen
-
0722-3277
-
Debye P and Hückel E 1923 Zur theorie der elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen Phys. Z. 24 185-206
-
(1923)
Phys. Z.
, vol.24
, pp. 185-206
-
-
Debye, P.1
Hückel, E.2
-
16
-
-
0000555535
-
Sur la constitution de la charge électrique à la surface d'un électrolyte
-
10.1051/jphystap:019100090045700
-
Gouy G 1910 Sur la constitution de la charge électrique à la surface d'un électrolyte J. Phys. Théor. Appl. 9 457-68
-
(1910)
J. Phys. Théor. Appl.
, vol.9
, pp. 457-468
-
-
Gouy, G.1
-
17
-
-
0000264109
-
A contribution to the theory of electrocapillarity
-
10.1080/14786440408634187
-
Chapman D L 1913 A contribution to the theory of electrocapillarity Phil. Mag. J. Sci. 25 475-81
-
(1913)
Phil. Mag. J. Sci.
, vol.25
, pp. 475-481
-
-
Chapman, D.L.1
-
18
-
-
27144537557
-
The electrical double layer and the theory of electrocapillarity
-
10.1021/cr60130a002
-
Grahame D C 1947 The electrical double layer and the theory of electrocapillarity Chem. Rev. 41 441-501
-
(1947)
Chem. Rev.
, vol.41
, pp. 441-501
-
-
Grahame, D.C.1
-
19
-
-
84874848132
-
Quantitative probing of surface charges at dielectric-electrolyte interfaces
-
10.1039/c3lc41351a
-
Guan W H, Rajan N K, Duan X X and Reed M A 2013 Quantitative probing of surface charges at dielectric-electrolyte interfaces Lab Chip 13 1431-6
-
(2013)
Lab Chip
, vol.13
, pp. 1431-1436
-
-
Guan, W.H.1
Rajan, N.K.2
Duan, X.X.3
Reed, M.A.4
-
22
-
-
24344451308
-
Ion transport through nanoslits dominated by the effective surface charge
-
10.1063/1.1954899 253111
-
Schoch R B and Renaud P 2005 Ion transport through nanoslits dominated by the effective surface charge Appl. Phys. Lett. 86 253111
-
(2005)
Appl. Phys. Lett.
, vol.86
-
-
Schoch, R.B.1
Renaud, P.2
-
23
-
-
80055062533
-
Field-effect reconfigurable nanofluidic ionic diodes
-
10.1038/ncomms1514
-
Guan W H, Fan R and Reed M A 2011 Field-effect reconfigurable nanofluidic ionic diodes Nature Commun. 2 506
-
(2011)
Nature Commun.
, vol.2
, pp. 506
-
-
Guan, W.H.1
Fan, R.2
Reed, M.A.3
-
24
-
-
78650015802
-
Anomalous ion transport in 2-nm hydrophilic nanochannels
-
10.1038/nnano.2010.233 1748-3387
-
Duan C H and Majumdar A 2010 Anomalous ion transport in 2-nm hydrophilic nanochannels Nature Nanotechnol. 5 848-52
-
(2010)
Nature Nanotechnol.
, vol.5
, pp. 848-852
-
-
Duan, C.H.1
Majumdar, A.2
-
25
-
-
4344568092
-
Surface-charge-governed ion transport in nanofluidic channels
-
10.1103/PhysRevLett.93.035901 035901
-
Stein D, Kruithof M and Dekker C 2004 Surface-charge-governed ion transport in nanofluidic channels Phys. Rev. Lett. 93 035901
-
(2004)
Phys. Rev. Lett.
, vol.93
-
-
Stein, D.1
Kruithof, M.2
Dekker, C.3
-
26
-
-
21644437442
-
Ionic transport phenomena in nanofluidics: Experimental and theoretical study of the exclusion-enrichment effect on a chip
-
10.1021/nl050265h
-
Plecis A, Schoch R B and Renaud P 2005 Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip Nano Lett. 5 1147-55
-
(2005)
Nano Lett.
, vol.5
, pp. 1147-1155
-
-
Plecis, A.1
Schoch, R.B.2
Renaud, P.3
-
27
-
-
34047096978
-
Rectification of ionic current in a nanofluidic diode
-
10.1021/nl062806o
-
Karnik R, Duan C H, Castelino K, Daiguji H and Majumdar A 2007 Rectification of ionic current in a nanofluidic diode Nano Lett. 7 547-51
-
(2007)
Nano Lett.
, vol.7
, pp. 547-551
-
-
Karnik, R.1
Duan, C.H.2
Castelino, K.3
Daiguji, H.4
Majumdar, A.5
-
28
-
-
34948868950
-
A biological porin engineered into a molecular, nanofluidic diode
-
10.1021/nl0716808
-
Miedema H, Vrouenraets M, Wierenga J, Meijberg W, Robillard G and Eisenberg B 2007 A biological porin engineered into a molecular, nanofluidic diode Nano Lett. 7 2886-91
-
(2007)
Nano Lett.
, vol.7
, pp. 2886-2891
-
-
Miedema, H.1
Vrouenraets, M.2
Wierenga, J.3
Meijberg, W.4
Robillard, G.5
Eisenberg, B.6
-
29
-
-
41149155320
-
Gated proton transport in aligned mesoporous silica films
-
10.1038/nmat2127 1476-1122
-
Fan R, Huh S, Yan R, Arnold J and Yang P D 2008 Gated proton transport in aligned mesoporous silica films Nature Mater. 7 303-7
-
(2008)
Nature Mater.
, vol.7
, pp. 303-307
-
-
Fan, R.1
Huh, S.2
Yan, R.3
Arnold, J.4
Yang, P.D.5
-
30
-
-
0026928806
-
An ionic liquid-channel field-effect transistor
-
10.1149/1.2068989 0013-4651
-
Gajar S A and Geis M W 1992 An ionic liquid-channel field-effect transistor J. Electrochem. Soc. 139 2833-40
-
(1992)
J. Electrochem. Soc.
, vol.139
, pp. 2833-2840
-
-
Gajar, S.A.1
Geis, M.W.2
-
31
-
-
27144491032
-
Polarity switching and transient responses in single nanotube nanofluidic transistors
-
10.1103/PhysRevLett.95.086607 086607
-
Fan R, Yue M, Karnik R, Majumdar A and Yang P D 2005 Polarity switching and transient responses in single nanotube nanofluidic transistors Phys. Rev. Lett. 95 086607
-
(2005)
Phys. Rev. Lett.
, vol.95
-
-
Fan, R.1
Yue, M.2
Karnik, R.3
Majumdar, A.4
Yang, P.D.5
-
32
-
-
19944383809
-
Electrostatic control of ions and molecules in nanofluidic transistors
-
10.1021/nl050493b
-
Karnik R, Fan R, Yue M, Li D Y, Yang P D and Majumdar A 2005 Electrostatic control of ions and molecules in nanofluidic transistors Nano Lett. 5 943-8
-
(2005)
Nano Lett.
, vol.5
, pp. 943-948
-
-
Karnik, R.1
Fan, R.2
Yue, M.3
Li, D.Y.4
Yang, P.D.5
Majumdar, A.6
-
33
-
-
66449084672
-
Ionic field effect transistors with sub-10 nm multiple nanopores
-
10.1021/nl900309s
-
Nam S W, Rooks M J, Kim K B and Rossnagel S M 2009 Ionic field effect transistors with sub-10 nm multiple nanopores Nano Lett. 9 2044-8
-
(2009)
Nano Lett.
, vol.9
, pp. 2044-2048
-
-
Nam, S.W.1
Rooks, M.J.2
Kim, K.B.3
Rossnagel, S.M.4
-
34
-
-
77949699110
-
Field effect modulation of ionic conductance of cylindrical silicon-on-insulator nanopore array
-
10.1063/1.3298468 054701
-
Joshi P, Smolyanitsky A, Petrossian L, Goryll M, Saraniti M and Thornton T J 2010 Field effect modulation of ionic conductance of cylindrical silicon-on-insulator nanopore array J. Appl. Phys. 107 054701
-
(2010)
J. Appl. Phys.
, vol.107
-
-
Joshi, P.1
Smolyanitsky, A.2
Petrossian, L.3
Goryll, M.4
Saraniti, M.5
Thornton, T.J.6
-
35
-
-
77952872319
-
Electrofluidic gating of a chemically reactive surface
-
10.1021/la9044682
-
Jiang Z J and Stein D 2010 Electrofluidic gating of a chemically reactive surface Langmuir 26 8161-73
-
(2010)
Langmuir
, vol.26
, pp. 8161-8173
-
-
Jiang, Z.J.1
Stein, D.2
-
36
-
-
72849121683
-
Field-effect based attomole titrations in nanoconfinement
-
10.1039/b913384d
-
Veenhuis R B H, van der Wouden E J, van Nieuwkasteele J W, van den Berg A and Eijkel J C T 2009 Field-effect based attomole titrations in nanoconfinement Lab Chip 9 3472-80
-
(2009)
Lab Chip
, vol.9
, pp. 3472-3480
-
-
Veenhuis, R.B.H.1
Van Der Wouden, E.J.2
Van Nieuwkasteele, J.W.3
Van Den Berg, A.4
Eijkel, J.C.T.5
-
37
-
-
84877723048
-
Field effect modulation of surface charge property and electroosmotic flow in a nanochannel: Stern layer effect
-
10.1021/jp402018u 1932-7447 C
-
Hughes C, Yeh L H and Qian S Z 2013 Field effect modulation of surface charge property and electroosmotic flow in a nanochannel: Stern layer effect J. Phys. Chem. C 117 9322-31
-
(2013)
J. Phys. Chem.
, vol.117
, pp. 9322-9331
-
-
Hughes, C.1
Yeh, L.H.2
Qian, S.Z.3
-
38
-
-
0000212520
-
Theorie der membrangleichgewichte und membranpotentiale bei Vorhandensein von nicht Dialysierenden Elektrolyten ein Beitrag zur Physikalisch-Chemischen Physiologie
-
Donnan F G 1911 Theorie der membrangleichgewichte und membranpotentiale bei Vorhandensein von nicht Dialysierenden Elektrolyten ein Beitrag zur Physikalisch-Chemischen Physiologie Z. Elektrochem. Angew. Phys. Chemie 17 572-81
-
(1911)
Z. Elektrochem. Angew. Phys. Chemie
, vol.17
, pp. 572-581
-
-
Donnan, F.G.1
-
39
-
-
4344627894
-
The theory of membrane equilibria
-
10.1021/cr60001a003
-
Donnan F G 1924 The theory of membrane equilibria Chem. Rev. 1 73-90
-
(1924)
Chem. Rev.
, vol.1
, pp. 73-90
-
-
Donnan, F.G.1
-
41
-
-
77951049890
-
Theory and experiments of concentration polarization and ion focusing at microchannel and nanochannel interfaces
-
10.1039/b902074h
-
Zangle T A, Mani A and Santiago J G 2010 Theory and experiments of concentration polarization and ion focusing at microchannel and nanochannel interfaces Chem. Soc. Rev. 39 1014-35
-
(2010)
Chem. Soc. Rev.
, vol.39
, pp. 1014-1035
-
-
Zangle, T.A.1
Mani, A.2
Santiago, J.G.3
-
42
-
-
77952487902
-
Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: Theory, fabrication, and applications
-
10.1039/b822556g
-
Kim S J, Song Y A and Han J 2010 Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: theory, fabrication, and applications Chem. Soc. Rev. 39 912-22
-
(2010)
Chem. Soc. Rev.
, vol.39
, pp. 912-922
-
-
Kim, S.J.1
Song, Y.A.2
Han, J.3
-
43
-
-
79952254494
-
Ionic and mass transport in micro-nanofluidic devices: A matter of volumic surface charge
-
10.1039/c0lc00079e
-
Plecis A, Pallandre A and Haghiri-Gosnet A M 2011 Ionic and mass transport in micro-nanofluidic devices: a matter of volumic surface charge Lab Chip 11 795-804
-
(2011)
Lab Chip
, vol.11
, pp. 795-804
-
-
Plecis, A.1
Pallandre, A.2
Haghiri-Gosnet, A.M.3
-
44
-
-
18744363890
-
Technologies for nanofluidic systems: Top-down versus bottom-up - A review
-
10.1039/b416951d
-
Mijatovic D, Eijkel J C T and van den Berg A 2005 Technologies for nanofluidic systems: top-down versus bottom-up - a review Lab Chip 5 492-500
-
(2005)
Lab Chip
, vol.5
, pp. 492-500
-
-
Mijatovic, D.1
Eijkel, J.C.T.2
Van Den Berg, A.3
-
45
-
-
33645809573
-
Review of fabrication of nanochannels for single phase liquid flow
-
10.1007/s10404-005-0068-1
-
Perry J L and Kandlikar S G 2006 Review of fabrication of nanochannels for single phase liquid flow Microfluid. Nanofluid. 2 185-93
-
(2006)
Microfluid. Nanofluid.
, vol.2
, pp. 185-193
-
-
Perry, J.L.1
Kandlikar, S.G.2
-
46
-
-
78249277892
-
Fluidics meets electronics: Carbon nanotubes as nanopores
-
10.1002/anie.201001135
-
Lemay S G 2010 Fluidics meets electronics: carbon nanotubes as nanopores Chem. Int. Edn 49 7627-8
-
(2010)
Chem. Int. Edn
, vol.49
, pp. 7627-7628
-
-
Lemay, S.G.1
-
47
-
-
25844455162
-
DNA translocation in inorganic nanotubes
-
10.1021/nl0509677
-
Fan R, Karnik R, Yue M, Li D Y, Majumdar A and Yang P D 2005 DNA translocation in inorganic nanotubes Nano Lett. 5 1633-7
-
(2005)
Nano Lett.
, vol.5
, pp. 1633-1637
-
-
Fan, R.1
Karnik, R.2
Yue, M.3
Li, D.Y.4
Majumdar, A.5
Yang, P.D.6
-
48
-
-
77956511031
-
Coherence resonance in a single-walled carbon nanotube ion channel
-
10.1126/science.1193383
-
Lee C Y, Choi W, Han J H and Strano M S 2010 Coherence resonance in a single-walled carbon nanotube ion channel Science 329 1320-4
-
(2010)
Science
, vol.329
, pp. 1320-1324
-
-
Lee, C.Y.1
Choi, W.2
Han, J.H.3
Strano, M.S.4
-
49
-
-
84862796315
-
Electrophoretically induced aqueous flow through single-walled carbon nanotube membranes
-
10.1038/nnano.2011.240 1748-3387
-
Wu J, Gerstandt K, Zhang H B, Liu J and Hinds B J 2012 Electrophoretically induced aqueous flow through single-walled carbon nanotube membranes Nature Nanotechnol. 7 133-9
-
(2012)
Nature Nanotechnol.
, vol.7
, pp. 133-139
-
-
Wu, J.1
Gerstandt, K.2
Zhang, H.B.3
Liu, J.4
Hinds, B.J.5
-
50
-
-
80053311866
-
Origin of giant ionic currents in carbon nanotube channels
-
10.1021/nn202115s
-
Pang P, He J, Park J H, Krstic P S and Lindsay S 2011 Origin of giant ionic currents in carbon nanotube channels ACS Nano 5 7277-83
-
(2011)
ACS Nano
, vol.5
, pp. 7277-7283
-
-
Pang, P.1
He, J.2
Park, J.H.3
Krstic, P.S.4
Lindsay, S.5
-
51
-
-
1642542711
-
Controlling the transport of cations through permselective mesoporous alumina layers by manipulation of electric field and ionic strength
-
10.1016/j.jcis.2003.10.024
-
Schmuhl R, Keizer K, van den Berg A, ten Elshof J E and Blank D H A 2004 Controlling the transport of cations through permselective mesoporous alumina layers by manipulation of electric field and ionic strength J. Colloid Interface Sci. 273 331-8
-
(2004)
J. Colloid Interface Sci.
, vol.273
, pp. 331-338
-
-
Schmuhl, R.1
Keizer, K.2
Van Den Berg, A.3
Ten Elshof, J.E.4
Blank, D.H.A.5
-
52
-
-
84859806565
-
Ion transport in mesoporous silica SBA-16 thin films with 3D cubic structures
-
10.1021/la204477h
-
Daiguji H, Hwang J, Takahashi A, Kataoka S and Endo A 2012 Ion transport in mesoporous silica SBA-16 thin films with 3D cubic structures Langmuir 28 3671-7
-
(2012)
Langmuir
, vol.28
, pp. 3671-3677
-
-
Daiguji, H.1
Hwang, J.2
Takahashi, A.3
Kataoka, S.4
Endo, A.5
-
53
-
-
7644219892
-
State of understanding of Nafion
-
10.1021/cr0207123
-
Mauritz K A and Moore R B 2004 State of understanding of Nafion Chem. Rev. 104 4535-85
-
(2004)
Chem. Rev.
, vol.104
, pp. 4535-4585
-
-
Mauritz, K.A.1
Moore, R.B.2
-
55
-
-
33646467115
-
Inorganic nanotubes: A novel platform for nanofluidics
-
10.1021/ar040274h 0001-4842
-
Goldberger J, Fan R and Yang P D 2006 Inorganic nanotubes: a novel platform for nanofluidics Acc. Chem. Res. 39 239-48
-
(2006)
Acc. Chem. Res.
, vol.39
, pp. 239-248
-
-
Goldberger, J.1
Fan, R.2
Yang, P.D.3
-
56
-
-
64649086349
-
Ionic current rectification, breakdown, and switching in heterogeneous oxide nanofluidic devices
-
10.1021/nn8007542
-
Cheng L J and Guo L J 2009 Ionic current rectification, breakdown, and switching in heterogeneous oxide nanofluidic devices ACS Nano 3 575-84
-
(2009)
ACS Nano
, vol.3
, pp. 575-584
-
-
Cheng, L.J.1
Guo, L.J.2
-
58
-
-
0037418895
-
Ultrahigh-density nanowire lattices and circuits
-
10.1126/science.1081940
-
Melosh N A, Boukai A, Diana F, Gerardot B, Badolato A, Petroff P M and Heath J R 2003 Ultrahigh-density nanowire lattices and circuits Science 300 112-5
-
(2003)
Science
, vol.300
, pp. 112-115
-
-
Melosh, N.A.1
Boukai, A.2
Diana, F.3
Gerardot, B.4
Badolato, A.5
Petroff, P.M.6
Heath, J.R.7
-
59
-
-
65249161562
-
Fast nonlinear ion transport via field-induced hydrodynamic slip in sub-20-nm hydrophilic nanofluidic transistors
-
10.1021/nl802931r
-
Vermesh U, Choi J W, Vermesh O, Fan R, Nagarah J and Heath J R 2009 Fast nonlinear ion transport via field-induced hydrodynamic slip in sub-20-nm hydrophilic nanofluidic transistors Nano Lett. 9 1315-9
-
(2009)
Nano Lett.
, vol.9
, pp. 1315-1319
-
-
Vermesh, U.1
Choi, J.W.2
Vermesh, O.3
Fan, R.4
Nagarah, J.5
Heath, J.R.6
-
60
-
-
36248992516
-
Rectified ion transport through concentration gradient in homogeneous silica nanochannels
-
10.1021/nl071770c
-
Cheng L J and Guo L J 2007 Rectified ion transport through concentration gradient in homogeneous silica nanochannels Nano Lett. 7 3165-71
-
(2007)
Nano Lett.
, vol.7
, pp. 3165-3171
-
-
Cheng, L.J.1
Guo, L.J.2
-
61
-
-
25844442065
-
Effects of biological reactions and modifications on conductance of nanofluidic channels
-
10.1021/nl050966e
-
Karnik R, Castelino K, Fan R, Yang P and Majumdar A 2005 Effects of biological reactions and modifications on conductance of nanofluidic channels Nano Lett. 5 1638-42
-
(2005)
Nano Lett.
, vol.5
, pp. 1638-1642
-
-
Karnik, R.1
Castelino, K.2
Fan, R.3
Yang, P.4
Majumdar, A.5
-
62
-
-
84859583528
-
Stochastic sensing of proteins with receptor-modified solid-state nanopores
-
10.1038/nnano.2012.24 1748-3387
-
Wei R S, Gatterdam V, Wieneke R, Tampe R and Rant U 2012 Stochastic sensing of proteins with receptor-modified solid-state nanopores Nature Nanotechnol. 7 257-63
-
(2012)
Nature Nanotechnol.
, vol.7
, pp. 257-263
-
-
Wei, R.S.1
Gatterdam, V.2
Wieneke, R.3
Tampe, R.4
Rant, U.5
-
63
-
-
69249086081
-
Nanopore analytics: Sensing of single molecules
-
10.1039/b813796j
-
Howorka S and Siwy Z 2009 Nanopore analytics: sensing of single molecules Chem. Soc. Rev. 38 2360-84
-
(2009)
Chem. Soc. Rev.
, vol.38
, pp. 2360-2384
-
-
Howorka, S.1
Siwy, Z.2
-
64
-
-
67649908631
-
Single-molecule protein unfolding in solid state nanopores
-
10.1021/ja901088b
-
Talaga D S and Li J L 2009 Single-molecule protein unfolding in solid state nanopores J. Am. Chem. Soc. 131 9287-97
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 9287-9297
-
-
Talaga, D.S.1
Li, J.L.2
-
65
-
-
0000368111
-
Direct control of the electroosmosis in capillary zone electrophoresis by using an external electric-field
-
10.1021/ac00213a043
-
Lee C S, Blanchard W C and Wu C T 1990 Direct control of the electroosmosis in capillary zone electrophoresis by using an external electric-field Anal. Chem. 62 1550-2
-
(1990)
Anal. Chem.
, vol.62
, pp. 1550-1552
-
-
Lee, C.S.1
Blanchard, W.C.2
Wu, C.T.3
-
66
-
-
0026830086
-
Electroosmotic flow-control and monitoring with an applied radial voltage for capillary zone electrophoresis
-
10.1021/ac00029a012
-
Hayes M A and Ewing A G 1992 Electroosmotic flow-control and monitoring with an applied radial voltage for capillary zone electrophoresis Anal. Chem. 64 512-6
-
(1992)
Anal. Chem.
, vol.64
, pp. 512-516
-
-
Hayes, M.A.1
Ewing, A.G.2
-
67
-
-
77951921740
-
Flow field effect transistors with polarisable interface for EOF tunable microfluidic separation devices
-
10.1039/b921808d
-
Plecis A, Tazid J, Pallandre A, Martinhon P, Deslouis C, Chen Y and Haghiri-Gosnet A M 2010 Flow field effect transistors with polarisable interface for EOF tunable microfluidic separation devices Lab Chip 10 1245-53
-
(2010)
Lab Chip
, vol.10
, pp. 1245-1253
-
-
Plecis, A.1
Tazid, J.2
Pallandre, A.3
Martinhon, P.4
Deslouis, C.5
Chen, Y.6
Haghiri-Gosnet, A.M.7
-
68
-
-
84857377273
-
Field effect control of surface charge property and electroosmotic flow in nanofluidics
-
10.1021/jp211496b 1932-7447 C
-
Yeh L H, Xue S, Joo S W, Qian S and Hsu J P 2012 Field effect control of surface charge property and electroosmotic flow in nanofluidics J. Phys. Chem. C 116 4209-16
-
(2012)
J. Phys. Chem.
, vol.116
, pp. 4209-4216
-
-
Yeh, L.H.1
Xue, S.2
Joo, S.W.3
Qian, S.4
Hsu, J.P.5
-
69
-
-
66149171649
-
Effect of wall-molecule interactions on electrokinetic transport of charged molecules in nanofluidic channels during FET flow control
-
10.1039/b901382m
-
Oh Y J, Garcia A L, Petsev D N, Lopez G P, Brueck S R J, Ivory C F and Han S M 2009 Effect of wall-molecule interactions on electrokinetic transport of charged molecules in nanofluidic channels during FET flow control Lab Chip 9 1601-8
-
(2009)
Lab Chip
, vol.9
, pp. 1601-1608
-
-
Oh, Y.J.1
Garcia, A.L.2
Petsev, D.N.3
Lopez, G.P.4
Brueck, S.R.J.5
Ivory, C.F.6
Han, S.M.7
-
70
-
-
0033199139
-
Extension of external voltage control of electroosmosis to high-pH buffers
-
10.1021/ac990301v
-
Hayes M A 1999 Extension of external voltage control of electroosmosis to high-pH buffers Anal. Chem. 71 3793-8
-
(1999)
Anal. Chem.
, vol.71
, pp. 3793-3798
-
-
Hayes, M.A.1
-
71
-
-
33750990471
-
Directional flow induced by synchronized longitudinal and zeta-potential controlling AC-electrical fields
-
10.1039/b607403k
-
van der Wouden E J, Hermes D C, Gardeniers J G E and van den Berg A 2006 Directional flow induced by synchronized longitudinal and zeta-potential controlling AC-electrical fields Lab Chip 6 1300-5
-
(2006)
Lab Chip
, vol.6
, pp. 1300-1305
-
-
Van Der Wouden, E.J.1
Hermes, D.C.2
Gardeniers, J.G.E.3
Van Den Berg, A.4
-
72
-
-
0842287331
-
Ion transport in nanofluidic channels
-
10.1021/nl0348185
-
Daiguji H, Yang P D and Majumdar A 2004 Ion transport in nanofluidic channels Nano Lett. 4 137-42
-
(2004)
Nano Lett.
, vol.4
, pp. 137-142
-
-
Daiguji, H.1
Yang, P.D.2
Majumdar, A.3
-
73
-
-
84872872857
-
Tunable ionic transport for a triangular nanochannel in a polymeric nanofluidic system
-
10.1021/nn3050424
-
Kim B, Heo J, Kwon H J, Cho S J, Han J, Kim S J and Lim G 2013 Tunable ionic transport for a triangular nanochannel in a polymeric nanofluidic system ACS Nano 7 740-7
-
(2013)
ACS Nano
, vol.7
, pp. 740-747
-
-
Kim, B.1
Heo, J.2
Kwon, H.J.3
Cho, S.J.4
Han, J.5
Kim, S.J.6
Lim, G.7
-
74
-
-
78650280059
-
Gating of nanopores: Modeling and implementation of logic gates
-
10.1021/jp1087114 1932-7447 C
-
Mafe S, Manzanares J A and Ramirez P 2010 Gating of nanopores: modeling and implementation of logic gates J. Phys. Chem. C 114 21287-90
-
(2010)
J. Phys. Chem.
, vol.114
, pp. 21287-21290
-
-
Mafe, S.1
Manzanares, J.A.2
Ramirez, P.3
-
75
-
-
77957322357
-
Field effect regulation of DNA trans location through a nanopore
-
10.1021/ac101628e
-
Ai Y, Liu J, Zhang B K and Qian S 2010 Field effect regulation of DNA trans location through a nanopore Anal. Chem. 82 8217-25
-
(2010)
Anal. Chem.
, vol.82
, pp. 8217-8225
-
-
Ai, Y.1
Liu, J.2
Zhang, B.K.3
Qian, S.4
-
76
-
-
84865583014
-
Control of DNA capture by nanofluidic transistors
-
10.1021/nn3014917
-
Paik K H, Liu Y, Tabard-Cossa V, Waugh M J, Huber D E, Provine J, Howe R T, Dutton R W and Davis R W 2012 Control of DNA capture by nanofluidic transistors ACS Nano 6 6767-75
-
(2012)
ACS Nano
, vol.6
, pp. 6767-6775
-
-
Paik, K.H.1
Liu, Y.2
Tabard-Cossa, V.3
Waugh, M.J.4
Huber, D.E.5
Provine, J.6
Howe, R.T.7
Dutton, R.W.8
Davis, R.W.9
-
77
-
-
0001223244
-
Nanochannel fabrication for chemical sensors
-
10.1116/1.589750 0734-211X B
-
Stern M B, Geis M W and Curtin J E 1997 Nanochannel fabrication for chemical sensors J. Vac. Sci. Technol. B 15 2887-91
-
(1997)
J. Vac. Sci. Technol.
, vol.15
, pp. 2887-2891
-
-
Stern, M.B.1
Geis, M.W.2
Curtin, J.E.3
-
78
-
-
77952539304
-
Nanofluidic diodes
-
10.1039/b822554k
-
Cheng L J and Guo L J 2010 Nanofluidic diodes Chem. Soc. Rev. 39 923-38
-
(2010)
Chem. Soc. Rev.
, vol.39
, pp. 923-938
-
-
Cheng, L.J.1
Guo, L.J.2
-
79
-
-
0030025308
-
The inward rectification mechanism of the HERG cardiac potassium channel
-
10.1038/379833a0
-
Smith P L, Baukrowitz T and Yellen G 1996 The inward rectification mechanism of the HERG cardiac potassium channel Nature 379 833-6
-
(1996)
Nature
, vol.379
, pp. 833-836
-
-
Smith, P.L.1
Baukrowitz, T.2
Yellen, G.3
-
80
-
-
0031276266
-
Current rectification at quartz nanopipet electrodes
-
10.1021/ac970551g
-
Wei C, Bard A J and Feldberg S W 1997 Current rectification at quartz nanopipet electrodes Anal. Chem. 69 4627-33
-
(1997)
Anal. Chem.
, vol.69
, pp. 4627-4633
-
-
Wei, C.1
Bard, A.J.2
Feldberg, S.W.3
-
81
-
-
0036848993
-
Rectification and voltage gating of ion currents in a nanofabricated pore
-
10.1209/epl/i2002-00271-3 0295-5075 349
-
Siwy Z, Gu Y, Spohr H A, Baur D, Wolf-Reber A, Spohr R, Apel P and Korchev Y E 2002 Rectification and voltage gating of ion currents in a nanofabricated pore Europhys. Lett. 60 349-55
-
(2002)
Europhys. Lett.
, vol.60
, Issue.3
, pp. 349-355
-
-
Siwy, Z.1
Gu, Y.2
Spohr, H.A.3
Baur, D.4
Wolf-Reber, A.5
Spohr, R.6
Apel, P.7
Korchev, Y.E.8
-
82
-
-
34547925988
-
Ionic conduction, rectification, and selectivity in single conical nanopores
-
10.1063/1.2179797 104706
-
Cervera J, Schiedt B, Neumann R, Mafe S and Ramirez P 2006 Ionic conduction, rectification, and selectivity in single conical nanopores J. Chem. Phys. 124 104706
-
(2006)
J. Chem. Phys.
, vol.124
-
-
Cervera, J.1
Schiedt, B.2
Neumann, R.3
Mafe, S.4
Ramirez, P.5
-
84
-
-
69549137368
-
Nanofluidic diodes based on nanotube heterojunctions
-
10.1021/nl9020123
-
Yan R X, Liang W J, Fan R and Yang P D 2009 Nanofluidic diodes based on nanotube heterojunctions Nano Lett. 9 3820-5
-
(2009)
Nano Lett.
, vol.9
, pp. 3820-3825
-
-
Yan, R.X.1
Liang, W.J.2
Fan, R.3
Yang, P.D.4
-
85
-
-
34047190449
-
Nanofluidic diode
-
10.1021/nl062924b
-
Vlassiouk I and Siwy Z S 2007 Nanofluidic diode Nano Lett. 7 552-6
-
(2007)
Nano Lett.
, vol.7
, pp. 552-556
-
-
Vlassiouk, I.1
Siwy, Z.S.2
-
86
-
-
33751269969
-
A pH-tunable nanofluidic diode: Electrochemical rectification in a reconstituted single ion channel
-
10.1021/jp063204w 1089-5647 B
-
Alcaraz A, Ramirez P, Garcia-Gimenez E, Lopez M L, Andrio A and Aguilella V M 2006 A pH-tunable nanofluidic diode: electrochemical rectification in a reconstituted single ion channel J. Phys. Chem. B 110 21205-9
-
(2006)
J. Phys. Chem.
, vol.110
, pp. 21205-21209
-
-
Alcaraz, A.1
Ramirez, P.2
Garcia-Gimenez, E.3
Lopez, M.L.4
Andrio, A.5
Aguilella, V.M.6
-
87
-
-
77949415441
-
Proton-regulated rectified ionic transport through solid-state conical nanopores modified with phosphate-bearing polymer brushes
-
10.1039/b920870d
-
Yameen B, Ali M, Neumann R, Ensinger W, Knoll W and Azzaroni O 2010 Proton-regulated rectified ionic transport through solid-state conical nanopores modified with phosphate-bearing polymer brushes Chem. Commun. 46 1908-10
-
(2010)
Chem. Commun.
, vol.46
, pp. 1908-1910
-
-
Yameen, B.1
Ali, M.2
Neumann, R.3
Ensinger, W.4
Knoll, W.5
Azzaroni, O.6
-
88
-
-
63649138398
-
A pH-tunable nanofluidic diode with a broad range of rectifying properties
-
10.1021/nn900039f
-
Ali M, Ramirez P, Mafe S, Neumann R and Ensinger W 2009 A pH-tunable nanofluidic diode with a broad range of rectifying properties ACS Nano 3 603-8
-
(2009)
ACS Nano
, vol.3
, pp. 603-608
-
-
Ali, M.1
Ramirez, P.2
Mafe, S.3
Neumann, R.4
Ensinger, W.5
-
89
-
-
77249178764
-
Nanoscale ionic diodes with tunable and switchable rectifying behavior
-
10.1021/ja909876h
-
Macrae M X, Blake S, Mayer M and Yang J 2010 Nanoscale ionic diodes with tunable and switchable rectifying behavior J. Am. Chem. Soc. 132 1766-7
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 1766-1767
-
-
Macrae, M.X.1
Blake, S.2
Mayer, M.3
Yang, J.4
-
90
-
-
67749143918
-
Tuning transport properties of nanofluidic devices with local charge inversion
-
10.1021/ja808717u
-
He Y, Gillespie D, Boda D, Vlassiouk I, Eisenberg R S and Siwy Z S 2009 Tuning transport properties of nanofluidic devices with local charge inversion J. Am. Chem. Soc. 131 5194-202
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 5194-5202
-
-
He, Y.1
Gillespie, D.2
Boda, D.3
Vlassiouk, I.4
Eisenberg, R.S.5
Siwy, Z.S.6
-
92
-
-
34248187012
-
Power generation by pressure-driven transport of ions in nanofluidic channels
-
10.1021/nl070194h
-
van der Heyden F H J, Bonthuis D J, Stein D, Meyer C and Dekker C 2007 Power generation by pressure-driven transport of ions in nanofluidic channels Nano Lett. 7 1022-5
-
(2007)
Nano Lett.
, vol.7
, pp. 1022-1025
-
-
Van Der Heyden, F.H.J.1
Bonthuis, D.J.2
Stein, D.3
Meyer, C.4
Dekker, C.5
-
93
-
-
54949130153
-
Electric energy generation in single track-etched nanopores
-
10.1063/1.3001590 163116
-
Xie Y B, Wang X W, Xue J M, Jin K, Chen L and Wang Y G 2008 Electric energy generation in single track-etched nanopores Appl. Phys. Lett. 93 163116
-
(2008)
Appl. Phys. Lett.
, vol.93
-
-
Xie, Y.B.1
Wang, X.W.2
Xue, J.M.3
Jin, K.4
Chen, L.5
Wang, Y.G.6
-
94
-
-
44249088764
-
Current status of ion exchange membranes for power generation from salinity gradients
-
10.1016/j.memsci.2008.03.037 0376-7388
-
Dlugolecki P, Nymeijer K, Metz S and Wessling M 2008 Current status of ion exchange membranes for power generation from salinity gradients J. Membr. Sci. 319 214-22
-
(2008)
J. Membr. Sci.
, vol.319
, pp. 214-222
-
-
Dlugolecki, P.1
Nymeijer, K.2
Metz, S.3
Wessling, M.4
-
95
-
-
78649753947
-
Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels
-
10.1007/s10404-010-0641-0
-
Kim D K, Duan C H, Chen Y F and Majumdar A 2010 Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels Microfluid. Nanofluid. 9 1215-24
-
(2010)
Microfluid. Nanofluid.
, vol.9
, pp. 1215-1224
-
-
Kim, D.K.1
Duan, C.H.2
Chen, Y.F.3
Majumdar, A.4
-
96
-
-
1342285634
-
On the efficiency of electrokinetic pumping of liquids through nanoscale channels
-
10.1016/j.snb.2003.10.027 0925-4005 B
-
Min J Y, Hasselbrink E F and Kim S J 2004 On the efficiency of electrokinetic pumping of liquids through nanoscale channels Sensors Actuators B 98 368-77
-
(2004)
Sensors Actuators
, vol.98
, pp. 368-377
-
-
Min, J.Y.1
Hasselbrink, E.F.2
Kim, S.J.3
-
97
-
-
33646851221
-
Thermodynamic analysis of electrokinetic energy conversion
-
10.1016/j.jpowsour.2005.05.057 0378-7753
-
Xuan X C and Li D Q 2006 Thermodynamic analysis of electrokinetic energy conversion J. Power Sources 156 677-84
-
(2006)
J. Power Sources
, vol.156
, pp. 677-684
-
-
Xuan, X.C.1
Li, D.Q.2
-
98
-
-
42549144108
-
Slip-enhanced electrokinetic energy conversion in nanofluidic channels
-
10.1088/0957-4484/19/19/195707 0957-4484 195707
-
Ren Y Q and Stein D 2008 Slip-enhanced electrokinetic energy conversion in nanofluidic channels Nanotechnology 19 195707
-
(2008)
Nanotechnology
, vol.19
, Issue.19
-
-
Ren, Y.Q.1
Stein, D.2
-
99
-
-
40049085954
-
Electrokinetic energy conversion in slip nanochannels
-
10.1016/j.jpowsour.2007.12.050 0378-7753
-
Davidson C and Xuan X C 2008 Electrokinetic energy conversion in slip nanochannels J. Power Sources 179 297-300
-
(2008)
J. Power Sources
, vol.179
, pp. 297-300
-
-
Davidson, C.1
Xuan, X.C.2
-
100
-
-
84870915912
-
Electric field modulation of the membrane potential in solid-state ion channels
-
10.1021/nl303820a
-
Guan W H and Reed M A 2012 Electric field modulation of the membrane potential in solid-state ion channels Nano Lett. 12 6441-7
-
(2012)
Nano Lett.
, vol.12
, pp. 6441-6447
-
-
Guan, W.H.1
Reed, M.A.2
-
103
-
-
0347720698
-
Effect of multivalent ions on electroosmotic flow in micro- and nanochannels
-
10.1002/elps.200305561
-
Zheng Z, Hansford D J and Conlisk A T 2003 Effect of multivalent ions on electroosmotic flow in micro- and nanochannels Electrophoresis 24 3006-17
-
(2003)
Electrophoresis
, vol.24
, pp. 3006-3017
-
-
Zheng, Z.1
Hansford, D.J.2
Conlisk, A.T.3
|