-
5
-
-
0001931761
-
Algorithms of fuzzy clustering with partial supervision
-
Pedrycz W. Algorithms of fuzzy clustering with partial supervision. Pattern Recognition Lett. 1985, 3:13-20.
-
(1985)
Pattern Recognition Lett.
, vol.3
, pp. 13-20
-
-
Pedrycz, W.1
-
6
-
-
33947597252
-
Software quality analysis of unlabeled program modules with semisupervised clustering
-
Seliya N., Khoshgoftaar T. Software quality analysis of unlabeled program modules with semisupervised clustering. IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans 2007, 37(2):201-211.
-
(2007)
IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans
, vol.37
, Issue.2
, pp. 201-211
-
-
Seliya, N.1
Khoshgoftaar, T.2
-
7
-
-
84855229970
-
Dimensionality reduction based on non-parametric mutual information
-
Faivishevsky L., Goldberger J. Dimensionality reduction based on non-parametric mutual information. Neurocomputing 2012, 80:31-37.
-
(2012)
Neurocomputing
, vol.80
, pp. 31-37
-
-
Faivishevsky, L.1
Goldberger, J.2
-
8
-
-
78649326338
-
Semi-supervised learning via regularized boosting working on multiple semi-supervised assumptions
-
Chen K., Wang S. Semi-supervised learning via regularized boosting working on multiple semi-supervised assumptions. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33(1):129-143.
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.33
, Issue.1
, pp. 129-143
-
-
Chen, K.1
Wang, S.2
-
9
-
-
39549089484
-
Semisupervised learning for a hybrid generative/discriminative classifier based on the maximum entropy principle
-
Fujino A., Ueda N., Saito K. Semisupervised learning for a hybrid generative/discriminative classifier based on the maximum entropy principle. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30(3):424-437.
-
(2008)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.30
, Issue.3
, pp. 424-437
-
-
Fujino, A.1
Ueda, N.2
Saito, K.3
-
10
-
-
33750729556
-
Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
-
Belkin M., Niyogi P., Sindhwani V. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 2006, 7:2399-2434.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
11
-
-
0031620208
-
-
Combining labeled and unlabeled data with co-training, in: Proceedings of the Annual ACM Conference on Computational Learning Theory
-
A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: Proceedings of the Annual ACM Conference on Computational Learning Theory, 1998, pp. 92-100.
-
(1998)
, pp. 92-100
-
-
Blum, A.1
Mitchell, T.2
-
12
-
-
77956057508
-
Question classification based on co-training style semi-supervised learning
-
Yu Z., Su L., Li L., Zhao Q., Mao C., Guo J. Question classification based on co-training style semi-supervised learning. Pattern Recognition Lett. 2010, 31(13):1975-1980.
-
(2010)
Pattern Recognition Lett.
, vol.31
, Issue.13
, pp. 1975-1980
-
-
Yu, Z.1
Su, L.2
Li, L.3
Zhao, Q.4
Mao, C.5
Guo, J.6
-
14
-
-
77952554171
-
Co-training with relevant random subspaces
-
Yaslan Y., Cataltepe Z. Co-training with relevant random subspaces. Neurocomputing 2010, 73(10-12):1652-1661.
-
(2010)
Neurocomputing
, vol.73
, Issue.10-12
, pp. 1652-1661
-
-
Yaslan, Y.1
Cataltepe, Z.2
-
15
-
-
84862789001
-
Dcpe co-training for classification
-
Xu J., He H., Man H. Dcpe co-training for classification. Neurocomputing 2012, 86:75-85.
-
(2012)
Neurocomputing
, vol.86
, pp. 75-85
-
-
Xu, J.1
He, H.2
Man, H.3
-
16
-
-
28244448186
-
Tri-training: exploiting unlabeled data using three classifiers
-
Zhou Z.-H., Li M. Tri-training: exploiting unlabeled data using three classifiers. IEEE Trans. Knowl. Data Eng. 2005, 17:1529-1541.
-
(2005)
IEEE Trans. Knowl. Data Eng.
, vol.17
, pp. 1529-1541
-
-
Zhou, Z.-H.1
Li, M.2
-
17
-
-
36249007597
-
Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples
-
Li M., Zhou Z.-H. Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples. IEEE Trans. Syst. Man Cybern., Part A: Syst. Humans 2007, 37(6):1088-1098.
-
(2007)
IEEE Trans. Syst. Man Cybern., Part A: Syst. Humans
, vol.37
, Issue.6
, pp. 1088-1098
-
-
Li, M.1
Zhou, Z.-H.2
-
18
-
-
78649409198
-
Sparse semi-supervised learning using conjugate functions
-
Sun S., Shawe-Taylor J. Sparse semi-supervised learning using conjugate functions. J. Mach. Learn. Res. 2010, 11:2423-2455.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 2423-2455
-
-
Sun, S.1
Shawe-Taylor, J.2
-
19
-
-
0001938951
-
Transductive inference for text classification using support vector machines
-
in: Proceedings of the 16th International Conference on Machine Learning, Morgan Kaufmann
-
T. Joachims, Transductive inference for text classification using support vector machines, in: Proceedings of the 16th International Conference on Machine Learning, Morgan Kaufmann, 1999, pp. 200-209.
-
(1999)
, pp. 200-209
-
-
Joachims, T.1
-
20
-
-
84860231071
-
A multiple kernel framework for inductive semi-supervised SVM learning
-
Tian X., Gasso G., Canu S. A multiple kernel framework for inductive semi-supervised SVM learning. Neurocomputing 2012, 90:46-58.
-
(2012)
Neurocomputing
, vol.90
, pp. 46-58
-
-
Tian, X.1
Gasso, G.2
Canu, S.3
-
21
-
-
0010805362
-
-
Learning from labeled and unlabeled data using graph mincuts, in: Proceedings of the 18th International Conference on Machine Learning
-
A. Blum, S. Chawla, Learning from labeled and unlabeled data using graph mincuts, in: Proceedings of the 18th International Conference on Machine Learning, 2001, pp. 19-26.
-
(2001)
, pp. 19-26
-
-
Blum, A.1
Chawla, S.2
-
22
-
-
79551521431
-
Semi-supervised classification and betweenness computation on large, sparse, directed graphs
-
Mantrach A., Van Zeebroeck N., Francq P., Shimbo M., Bersini H., Saerens M. Semi-supervised classification and betweenness computation on large, sparse, directed graphs. Pattern Recognition 2011, 44(6):1212-1224.
-
(2011)
Pattern Recognition
, vol.44
, Issue.6
, pp. 1212-1224
-
-
Mantrach, A.1
Van Zeebroeck, N.2
Francq, P.3
Shimbo, M.4
Bersini, H.5
Saerens, M.6
-
23
-
-
85141919230
-
Unsupervised word sense disambiguation rivaling supervised methods
-
in: Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics
-
D. Yarowsky, Unsupervised word sense disambiguation rivaling supervised methods, in: Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics, 1995, pp. 189-196.
-
(1995)
, pp. 189-196
-
-
Yarowsky, D.1
-
24
-
-
77955431070
-
Semi-supervised learning based on nearest neighbor rule and cut edges
-
Wang Y., Xu X., Zhao H., Hua Z. Semi-supervised learning based on nearest neighbor rule and cut edges. Knowl. Based Syst. 2010, 23(6):547-554.
-
(2010)
Knowl. Based Syst.
, vol.23
, Issue.6
, pp. 547-554
-
-
Wang, Y.1
Xu, X.2
Zhao, H.3
Hua, Z.4
-
25
-
-
34547552286
-
-
A self-training semi-supervised support vector machine algorithm and its applications in brain computer interface, in: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing-Proceedings
-
Y. Li, H. Li, C. Guan, Z. Chin, A self-training semi-supervised support vector machine algorithm and its applications in brain computer interface, in: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing-Proceedings, 2007, pp. 385-388.
-
(2007)
, pp. 385-388
-
-
Li, Y.1
Li, H.2
Guan, C.3
Chin, Z.4
-
26
-
-
78649321657
-
A self-trained ensemble with semisupervised SVM: an application to pixel classification of remote sensing imagery
-
Maulik U., Chakraborty D. A self-trained ensemble with semisupervised SVM: an application to pixel classification of remote sensing imagery. Pattern Recognition 2011, 44(3):615-623.
-
(2011)
Pattern Recognition
, vol.44
, Issue.3
, pp. 615-623
-
-
Maulik, U.1
Chakraborty, D.2
-
27
-
-
26944471649
-
-
SETRED: self-training with editing, in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
-
M. Li, Z.-H. Zhou, SETRED: self-training with editing, in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2005, pp. 611-621.
-
(2005)
, pp. 611-621
-
-
Li, M.1
Zhou, Z.-H.2
-
30
-
-
0343081513
-
Reduction techniques for instance-based learning algorithms
-
Wilson D.R., Martinez T.R. Reduction techniques for instance-based learning algorithms. Mach. Learn. 2000, 38(3):257-286.
-
(2000)
Mach. Learn.
, vol.38
, Issue.3
, pp. 257-286
-
-
Wilson, D.R.1
Martinez, T.R.2
-
31
-
-
84856161441
-
Prototype selection for nearest neighbor classification: taxonomy and empirical study
-
García S., Derrac J., Cano J., Herrera F. Prototype selection for nearest neighbor classification: taxonomy and empirical study. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34(3):417-435.
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.34
, Issue.3
, pp. 417-435
-
-
García, S.1
Derrac, J.2
Cano, J.3
Herrera, F.4
-
32
-
-
0011984911
-
-
Experiments with noise filtering in a medical domain, in: Proceedings of the 16th International Conference on Machine Learning
-
D. Gamberger, R. Boskovic, N. Lavrac, C. Groselj, Experiments with noise filtering in a medical domain, in: Proceedings of the 16th International Conference on Machine Learning, 1999, pp. 143-151.
-
(1999)
, pp. 143-151
-
-
Gamberger, D.1
Boskovic, R.2
Lavrac, N.3
Groselj, C.4
-
33
-
-
34249859248
-
Improving software quality prediction by noise filtering techniques
-
Khoshgoftaar T.M., Rebours P. Improving software quality prediction by noise filtering techniques. J. Comput. Sci. Technol. 2007, 22:387-396.
-
(2007)
J. Comput. Sci. Technol.
, vol.22
, pp. 387-396
-
-
Khoshgoftaar, T.M.1
Rebours, P.2
-
34
-
-
64549147047
-
Nearest neighbor editing aided by unlabeled data
-
Guan D., Yuan W., Lee Y.-K., Lee S. Nearest neighbor editing aided by unlabeled data. Inf. Sci. 2009, 179(13):2273-2282.
-
(2009)
Inf. Sci.
, vol.179
, Issue.13
, pp. 2273-2282
-
-
Guan, D.1
Yuan, W.2
Lee, Y.-K.3
Lee, S.4
-
35
-
-
84855443761
-
Identifying mislabeled training data with the aid of unlabeled data
-
Guan D., Yuan W., Lee Y.-K., Lee S. Identifying mislabeled training data with the aid of unlabeled data. Appl. Intell. 2011, 35:345-358.
-
(2011)
Appl. Intell.
, vol.35
, pp. 345-358
-
-
Guan, D.1
Yuan, W.2
Lee, Y.-K.3
Lee, S.4
-
36
-
-
84926662675
-
Nearest neighbor pattern classification
-
Cover T.M., Hart P.E. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13(1):21-27.
-
(1967)
IEEE Trans. Inf. Theory
, vol.13
, Issue.1
, pp. 21-27
-
-
Cover, T.M.1
Hart, P.E.2
-
37
-
-
84896728744
-
-
The Top Ten Algorithms in Data Mining, Chapman & Hall/CRC Data Mining and Knowledge Discovery
-
X. Wu, V. Kumar (Eds.), The Top Ten Algorithms in Data Mining, Chapman & Hall/CRC Data Mining and Knowledge Discovery, 2009.
-
(2009)
-
-
Wu, X.1
Kumar, V.2
-
38
-
-
77549084648
-
Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power
-
García S., Fernández A., Luengo J., Herrera F. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf. Sci. 2010, 180:2044-2064.
-
(2010)
Inf. Sci.
, vol.180
, pp. 2044-2064
-
-
García, S.1
Fernández, A.2
Luengo, J.3
Herrera, F.4
-
39
-
-
27344454215
-
Learning from labeled and unlabeled data: an empirical study across techniques and domains
-
Chawla N., Karakoulas G. Learning from labeled and unlabeled data: an empirical study across techniques and domains. J. Artif. Intell. Res. 2005, 23:331-366.
-
(2005)
J. Artif. Intell. Res.
, vol.23
, pp. 331-366
-
-
Chawla, N.1
Karakoulas, G.2
-
40
-
-
0034143132
-
Noise detection and elimination in data preprocessing: experiments in medical domains
-
Gamberger D., Lavrac N., Dzeroski S. Noise detection and elimination in data preprocessing: experiments in medical domains. Appl. Artif. Intell. 2000, 14:205-223.
-
(2000)
Appl. Artif. Intell.
, vol.14
, pp. 205-223
-
-
Gamberger, D.1
Lavrac, N.2
Dzeroski, S.3
-
41
-
-
0025725905
-
Instance-based learning algorithms
-
Aha D.W., Kibler D., Albert M.K. Instance-based learning algorithms. Mach. Learn. 1991, 6(1):37-66.
-
(1991)
Mach. Learn.
, vol.6
, Issue.1
, pp. 37-66
-
-
Aha, D.W.1
Kibler, D.2
Albert, M.K.3
-
42
-
-
0015361129
-
Asymptotic properties of nearest neighbor rules using edited data
-
Wilson D.L. Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Syst. Man Cybern. 1972, 2(3):408-421.
-
(1972)
IEEE Trans. Syst. Man Cybern.
, vol.2
, Issue.3
, pp. 408-421
-
-
Wilson, D.L.1
-
43
-
-
0016969272
-
An experiment with the edited nearest-neighbor rule
-
Tomek I. An experiment with the edited nearest-neighbor rule. IEEE Trans. Syst. Man Cybern. 1976, 6(6):448-452.
-
(1976)
IEEE Trans. Syst. Man Cybern.
, vol.6
, Issue.6
, pp. 448-452
-
-
Tomek, I.1
-
44
-
-
0031164017
-
Prototype selection for the nearest neighbour rule through proximity graphs
-
Sánchez J.S., Pla F., Ferri F.J. Prototype selection for the nearest neighbour rule through proximity graphs. Pattern Recognition Lett. 1997, 18:507-513.
-
(1997)
Pattern Recognition Lett.
, vol.18
, pp. 507-513
-
-
Sánchez, J.S.1
Pla, F.2
Ferri, F.J.3
-
45
-
-
0033883192
-
A new edited k-nearest neighbor rule in the pattern classification problem
-
Hattori K., Takahashi M. A new edited k-nearest neighbor rule in the pattern classification problem. Pattern Recognition 2000, 33(3):521-528.
-
(2000)
Pattern Recognition
, vol.33
, Issue.3
, pp. 521-528
-
-
Hattori, K.1
Takahashi, M.2
-
46
-
-
0347895067
-
Analysis of new techniques to obtain quality training sets
-
Sánchez J., Barandela R., Marques A., Alejo R., Badenas J. Analysis of new techniques to obtain quality training sets. Pattern Recognition Lett. 2003, 24(7):1015-1022.
-
(2003)
Pattern Recognition Lett.
, vol.24
, Issue.7
, pp. 1015-1022
-
-
Sánchez, J.1
Barandela, R.2
Marques, A.3
Alejo, R.4
Badenas, J.5
-
47
-
-
0029669422
-
A new definition of neighborhood of a point in multi-dimensional space
-
Chaudhuri B.B. A new definition of neighborhood of a point in multi-dimensional space. Pattern Recognition Lett. 1996, 17(1):11-17.
-
(1996)
Pattern Recognition Lett.
, vol.17
, Issue.1
, pp. 11-17
-
-
Chaudhuri, B.B.1
-
48
-
-
25144493576
-
A stochastic approach to Wilson's editing algorithm
-
Proceedings of the 2nd Iberian Conference on Pattern Recognition and Image Analysis
-
F. Vázquez, J. Sánchez, F. Pla, A stochastic approach to Wilson's editing algorithm, in: Proceedings of the 2nd Iberian Conference on Pattern Recognition and Image Analysis, 2005, pp. 35-42.
-
(2005)
, pp. 35-42
-
-
Vázquez, F.1
Sánchez, J.2
Pla, F.3
-
49
-
-
0019279846
-
-
On the edited nearest neighbor rule, in: Proceedings of the Fifth International Conference on Pattern Recognition
-
P.A. Devijver, J. Kittler, On the edited nearest neighbor rule, in: Proceedings of the Fifth International Conference on Pattern Recognition, 1980, pp. 72-80.
-
(1980)
, pp. 72-80
-
-
Devijver, P.A.1
Kittler, J.2
-
50
-
-
0032597795
-
Consideration about sample-size sensitivity of a family of edited nearest-neighbor rules
-
Ferri F.J., Albert J.V., Vidal E. Consideration about sample-size sensitivity of a family of edited nearest-neighbor rules. IEEE Trans. Syst. Man Cybern. 1999, 29(4):667-672.
-
(1999)
IEEE Trans. Syst. Man Cybern.
, vol.29
, Issue.4
, pp. 667-672
-
-
Ferri, F.J.1
Albert, J.V.2
Vidal, E.3
-
52
-
-
34548677479
-
A lot of randomness is hiding in accuracy
-
Ben-David A. A lot of randomness is hiding in accuracy. Eng. Appl. Artif. Intell. 2007, 20:875-885.
-
(2007)
Eng. Appl. Artif. Intell.
, vol.20
, pp. 875-885
-
-
Ben-David, A.1
-
53
-
-
55549103698
-
KEEL: a software tool to assess evolutionary algorithms for data mining problems
-
Alcalá-Fdez J., Sánchez L., García S., del Jesus M.J., Ventura S., Garrell J.M., Otero J., Romero C., Bacardit J., Rivas V.M., Fernández J.C., Herrera F. KEEL: a software tool to assess evolutionary algorithms for data mining problems. Soft Comput. 2009, 13(3):307-318.
-
(2009)
Soft Comput.
, vol.13
, Issue.3
, pp. 307-318
-
-
Alcalá-Fdez, J.1
Sánchez, L.2
García, S.3
del Jesus, M.J.4
Ventura, S.5
Garrell, J.M.6
Otero, J.7
Romero, C.8
Bacardit, J.9
Rivas, V.M.10
Fernández, J.C.11
Herrera, F.12
-
54
-
-
79951829331
-
KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework
-
Alcalá-Fdez J., Fernandez A., Luengo J., Derrac J., García S., Sánchez L., Herrera F. KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Multiple-Valued Logic Soft Comput. 2010, 17(2-3):255-277.
-
(2010)
J. Multiple-Valued Logic Soft Comput.
, vol.17
, Issue.2-3
, pp. 255-277
-
-
Alcalá-Fdez, J.1
Fernandez, A.2
Luengo, J.3
Derrac, J.4
García, S.5
Sánchez, L.6
Herrera, F.7
-
55
-
-
64549120231
-
A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability
-
García S., Fernández A., Luengo J., Herrera F. A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability. Soft Comput. 2009, 13(10):959-977.
-
(2009)
Soft Comput.
, vol.13
, Issue.10
, pp. 959-977
-
-
García, S.1
Fernández, A.2
Luengo, J.3
Herrera, F.4
-
57
-
-
58149287952
-
An extension on "Statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons
-
García S., Herrera F. An extension on "Statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons. J. Mach. Learn. Res. 2008, 9:2677-2694.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 2677-2694
-
-
García, S.1
Herrera, F.2
-
58
-
-
80053073212
-
-
Fuzzy-rough set based semi-supervised learning, in: 2011 IEEE International Conference on Fuzzy Systems (FUZZ)
-
N. Mac Parthalain, R. Jensen, Fuzzy-rough set based semi-supervised learning, in: 2011 IEEE International Conference on Fuzzy Systems (FUZZ), 2011, pp. 2465-2472.
-
(2011)
, pp. 2465-2472
-
-
Mac Parthalain, N.1
Jensen, R.2
-
59
-
-
84872775741
-
On the use of evolutionary feature selection for improving fuzzy rough set based prototype selection
-
Derrac J., Verbiest N., García S., Cornelis C., Herrera F. On the use of evolutionary feature selection for improving fuzzy rough set based prototype selection. Soft Comput. 2013, 17:223-238.
-
(2013)
Soft Comput.
, vol.17
, pp. 223-238
-
-
Derrac, J.1
Verbiest, N.2
García, S.3
Cornelis, C.4
Herrera, F.5
|