메뉴 건너뛰기




Volumn 132, Issue , 2014, Pages 30-41

On the characterization of noise filters for self-training semi-supervised in nearest neighbor classification

Author keywords

Nearest neighbor classification; Noise filters; Noisy data; Self training; Semi supervised learning

Indexed keywords

NEAREST NEIGHBOR CLASSIFICATION; NOISE FILTERS; NOISY DATA; SELF-TRAINING; SEMI-SUPERVISED LEARNING;

EID: 84896737995     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.05.055     Document Type: Article
Times cited : (88)

References (59)
  • 5
    • 0001931761 scopus 로고
    • Algorithms of fuzzy clustering with partial supervision
    • Pedrycz W. Algorithms of fuzzy clustering with partial supervision. Pattern Recognition Lett. 1985, 3:13-20.
    • (1985) Pattern Recognition Lett. , vol.3 , pp. 13-20
    • Pedrycz, W.1
  • 6
    • 33947597252 scopus 로고    scopus 로고
    • Software quality analysis of unlabeled program modules with semisupervised clustering
    • Seliya N., Khoshgoftaar T. Software quality analysis of unlabeled program modules with semisupervised clustering. IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans 2007, 37(2):201-211.
    • (2007) IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans , vol.37 , Issue.2 , pp. 201-211
    • Seliya, N.1    Khoshgoftaar, T.2
  • 7
    • 84855229970 scopus 로고    scopus 로고
    • Dimensionality reduction based on non-parametric mutual information
    • Faivishevsky L., Goldberger J. Dimensionality reduction based on non-parametric mutual information. Neurocomputing 2012, 80:31-37.
    • (2012) Neurocomputing , vol.80 , pp. 31-37
    • Faivishevsky, L.1    Goldberger, J.2
  • 8
    • 78649326338 scopus 로고    scopus 로고
    • Semi-supervised learning via regularized boosting working on multiple semi-supervised assumptions
    • Chen K., Wang S. Semi-supervised learning via regularized boosting working on multiple semi-supervised assumptions. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33(1):129-143.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.1 , pp. 129-143
    • Chen, K.1    Wang, S.2
  • 9
    • 39549089484 scopus 로고    scopus 로고
    • Semisupervised learning for a hybrid generative/discriminative classifier based on the maximum entropy principle
    • Fujino A., Ueda N., Saito K. Semisupervised learning for a hybrid generative/discriminative classifier based on the maximum entropy principle. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30(3):424-437.
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , Issue.3 , pp. 424-437
    • Fujino, A.1    Ueda, N.2    Saito, K.3
  • 10
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
    • Belkin M., Niyogi P., Sindhwani V. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 2006, 7:2399-2434.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 11
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training, in: Proceedings of the Annual ACM Conference on Computational Learning Theory
    • A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: Proceedings of the Annual ACM Conference on Computational Learning Theory, 1998, pp. 92-100.
    • (1998) , pp. 92-100
    • Blum, A.1    Mitchell, T.2
  • 12
    • 77956057508 scopus 로고    scopus 로고
    • Question classification based on co-training style semi-supervised learning
    • Yu Z., Su L., Li L., Zhao Q., Mao C., Guo J. Question classification based on co-training style semi-supervised learning. Pattern Recognition Lett. 2010, 31(13):1975-1980.
    • (2010) Pattern Recognition Lett. , vol.31 , Issue.13 , pp. 1975-1980
    • Yu, Z.1    Su, L.2    Li, L.3    Zhao, Q.4    Mao, C.5    Guo, J.6
  • 14
    • 77952554171 scopus 로고    scopus 로고
    • Co-training with relevant random subspaces
    • Yaslan Y., Cataltepe Z. Co-training with relevant random subspaces. Neurocomputing 2010, 73(10-12):1652-1661.
    • (2010) Neurocomputing , vol.73 , Issue.10-12 , pp. 1652-1661
    • Yaslan, Y.1    Cataltepe, Z.2
  • 15
    • 84862789001 scopus 로고    scopus 로고
    • Dcpe co-training for classification
    • Xu J., He H., Man H. Dcpe co-training for classification. Neurocomputing 2012, 86:75-85.
    • (2012) Neurocomputing , vol.86 , pp. 75-85
    • Xu, J.1    He, H.2    Man, H.3
  • 16
    • 28244448186 scopus 로고    scopus 로고
    • Tri-training: exploiting unlabeled data using three classifiers
    • Zhou Z.-H., Li M. Tri-training: exploiting unlabeled data using three classifiers. IEEE Trans. Knowl. Data Eng. 2005, 17:1529-1541.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , pp. 1529-1541
    • Zhou, Z.-H.1    Li, M.2
  • 17
    • 36249007597 scopus 로고    scopus 로고
    • Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples
    • Li M., Zhou Z.-H. Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples. IEEE Trans. Syst. Man Cybern., Part A: Syst. Humans 2007, 37(6):1088-1098.
    • (2007) IEEE Trans. Syst. Man Cybern., Part A: Syst. Humans , vol.37 , Issue.6 , pp. 1088-1098
    • Li, M.1    Zhou, Z.-H.2
  • 18
    • 78649409198 scopus 로고    scopus 로고
    • Sparse semi-supervised learning using conjugate functions
    • Sun S., Shawe-Taylor J. Sparse semi-supervised learning using conjugate functions. J. Mach. Learn. Res. 2010, 11:2423-2455.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 2423-2455
    • Sun, S.1    Shawe-Taylor, J.2
  • 19
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • in: Proceedings of the 16th International Conference on Machine Learning, Morgan Kaufmann
    • T. Joachims, Transductive inference for text classification using support vector machines, in: Proceedings of the 16th International Conference on Machine Learning, Morgan Kaufmann, 1999, pp. 200-209.
    • (1999) , pp. 200-209
    • Joachims, T.1
  • 20
    • 84860231071 scopus 로고    scopus 로고
    • A multiple kernel framework for inductive semi-supervised SVM learning
    • Tian X., Gasso G., Canu S. A multiple kernel framework for inductive semi-supervised SVM learning. Neurocomputing 2012, 90:46-58.
    • (2012) Neurocomputing , vol.90 , pp. 46-58
    • Tian, X.1    Gasso, G.2    Canu, S.3
  • 21
    • 0010805362 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data using graph mincuts, in: Proceedings of the 18th International Conference on Machine Learning
    • A. Blum, S. Chawla, Learning from labeled and unlabeled data using graph mincuts, in: Proceedings of the 18th International Conference on Machine Learning, 2001, pp. 19-26.
    • (2001) , pp. 19-26
    • Blum, A.1    Chawla, S.2
  • 22
    • 79551521431 scopus 로고    scopus 로고
    • Semi-supervised classification and betweenness computation on large, sparse, directed graphs
    • Mantrach A., Van Zeebroeck N., Francq P., Shimbo M., Bersini H., Saerens M. Semi-supervised classification and betweenness computation on large, sparse, directed graphs. Pattern Recognition 2011, 44(6):1212-1224.
    • (2011) Pattern Recognition , vol.44 , Issue.6 , pp. 1212-1224
    • Mantrach, A.1    Van Zeebroeck, N.2    Francq, P.3    Shimbo, M.4    Bersini, H.5    Saerens, M.6
  • 23
    • 85141919230 scopus 로고
    • Unsupervised word sense disambiguation rivaling supervised methods
    • in: Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics
    • D. Yarowsky, Unsupervised word sense disambiguation rivaling supervised methods, in: Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics, 1995, pp. 189-196.
    • (1995) , pp. 189-196
    • Yarowsky, D.1
  • 24
    • 77955431070 scopus 로고    scopus 로고
    • Semi-supervised learning based on nearest neighbor rule and cut edges
    • Wang Y., Xu X., Zhao H., Hua Z. Semi-supervised learning based on nearest neighbor rule and cut edges. Knowl. Based Syst. 2010, 23(6):547-554.
    • (2010) Knowl. Based Syst. , vol.23 , Issue.6 , pp. 547-554
    • Wang, Y.1    Xu, X.2    Zhao, H.3    Hua, Z.4
  • 25
    • 34547552286 scopus 로고    scopus 로고
    • A self-training semi-supervised support vector machine algorithm and its applications in brain computer interface, in: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing-Proceedings
    • Y. Li, H. Li, C. Guan, Z. Chin, A self-training semi-supervised support vector machine algorithm and its applications in brain computer interface, in: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing-Proceedings, 2007, pp. 385-388.
    • (2007) , pp. 385-388
    • Li, Y.1    Li, H.2    Guan, C.3    Chin, Z.4
  • 26
    • 78649321657 scopus 로고    scopus 로고
    • A self-trained ensemble with semisupervised SVM: an application to pixel classification of remote sensing imagery
    • Maulik U., Chakraborty D. A self-trained ensemble with semisupervised SVM: an application to pixel classification of remote sensing imagery. Pattern Recognition 2011, 44(3):615-623.
    • (2011) Pattern Recognition , vol.44 , Issue.3 , pp. 615-623
    • Maulik, U.1    Chakraborty, D.2
  • 27
    • 26944471649 scopus 로고    scopus 로고
    • SETRED: self-training with editing, in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
    • M. Li, Z.-H. Zhou, SETRED: self-training with editing, in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2005, pp. 611-621.
    • (2005) , pp. 611-621
    • Li, M.1    Zhou, Z.-H.2
  • 30
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • Wilson D.R., Martinez T.R. Reduction techniques for instance-based learning algorithms. Mach. Learn. 2000, 38(3):257-286.
    • (2000) Mach. Learn. , vol.38 , Issue.3 , pp. 257-286
    • Wilson, D.R.1    Martinez, T.R.2
  • 31
    • 84856161441 scopus 로고    scopus 로고
    • Prototype selection for nearest neighbor classification: taxonomy and empirical study
    • García S., Derrac J., Cano J., Herrera F. Prototype selection for nearest neighbor classification: taxonomy and empirical study. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34(3):417-435.
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell. , vol.34 , Issue.3 , pp. 417-435
    • García, S.1    Derrac, J.2    Cano, J.3    Herrera, F.4
  • 32
    • 0011984911 scopus 로고    scopus 로고
    • Experiments with noise filtering in a medical domain, in: Proceedings of the 16th International Conference on Machine Learning
    • D. Gamberger, R. Boskovic, N. Lavrac, C. Groselj, Experiments with noise filtering in a medical domain, in: Proceedings of the 16th International Conference on Machine Learning, 1999, pp. 143-151.
    • (1999) , pp. 143-151
    • Gamberger, D.1    Boskovic, R.2    Lavrac, N.3    Groselj, C.4
  • 33
    • 34249859248 scopus 로고    scopus 로고
    • Improving software quality prediction by noise filtering techniques
    • Khoshgoftaar T.M., Rebours P. Improving software quality prediction by noise filtering techniques. J. Comput. Sci. Technol. 2007, 22:387-396.
    • (2007) J. Comput. Sci. Technol. , vol.22 , pp. 387-396
    • Khoshgoftaar, T.M.1    Rebours, P.2
  • 34
    • 64549147047 scopus 로고    scopus 로고
    • Nearest neighbor editing aided by unlabeled data
    • Guan D., Yuan W., Lee Y.-K., Lee S. Nearest neighbor editing aided by unlabeled data. Inf. Sci. 2009, 179(13):2273-2282.
    • (2009) Inf. Sci. , vol.179 , Issue.13 , pp. 2273-2282
    • Guan, D.1    Yuan, W.2    Lee, Y.-K.3    Lee, S.4
  • 35
    • 84855443761 scopus 로고    scopus 로고
    • Identifying mislabeled training data with the aid of unlabeled data
    • Guan D., Yuan W., Lee Y.-K., Lee S. Identifying mislabeled training data with the aid of unlabeled data. Appl. Intell. 2011, 35:345-358.
    • (2011) Appl. Intell. , vol.35 , pp. 345-358
    • Guan, D.1    Yuan, W.2    Lee, Y.-K.3    Lee, S.4
  • 36
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover T.M., Hart P.E. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13(1):21-27.
    • (1967) IEEE Trans. Inf. Theory , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.M.1    Hart, P.E.2
  • 37
    • 84896728744 scopus 로고    scopus 로고
    • The Top Ten Algorithms in Data Mining, Chapman & Hall/CRC Data Mining and Knowledge Discovery
    • X. Wu, V. Kumar (Eds.), The Top Ten Algorithms in Data Mining, Chapman & Hall/CRC Data Mining and Knowledge Discovery, 2009.
    • (2009)
    • Wu, X.1    Kumar, V.2
  • 38
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power
    • García S., Fernández A., Luengo J., Herrera F. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf. Sci. 2010, 180:2044-2064.
    • (2010) Inf. Sci. , vol.180 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 39
    • 27344454215 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data: an empirical study across techniques and domains
    • Chawla N., Karakoulas G. Learning from labeled and unlabeled data: an empirical study across techniques and domains. J. Artif. Intell. Res. 2005, 23:331-366.
    • (2005) J. Artif. Intell. Res. , vol.23 , pp. 331-366
    • Chawla, N.1    Karakoulas, G.2
  • 40
    • 0034143132 scopus 로고    scopus 로고
    • Noise detection and elimination in data preprocessing: experiments in medical domains
    • Gamberger D., Lavrac N., Dzeroski S. Noise detection and elimination in data preprocessing: experiments in medical domains. Appl. Artif. Intell. 2000, 14:205-223.
    • (2000) Appl. Artif. Intell. , vol.14 , pp. 205-223
    • Gamberger, D.1    Lavrac, N.2    Dzeroski, S.3
  • 41
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Aha D.W., Kibler D., Albert M.K. Instance-based learning algorithms. Mach. Learn. 1991, 6(1):37-66.
    • (1991) Mach. Learn. , vol.6 , Issue.1 , pp. 37-66
    • Aha, D.W.1    Kibler, D.2    Albert, M.K.3
  • 42
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbor rules using edited data
    • Wilson D.L. Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Syst. Man Cybern. 1972, 2(3):408-421.
    • (1972) IEEE Trans. Syst. Man Cybern. , vol.2 , Issue.3 , pp. 408-421
    • Wilson, D.L.1
  • 43
    • 0016969272 scopus 로고
    • An experiment with the edited nearest-neighbor rule
    • Tomek I. An experiment with the edited nearest-neighbor rule. IEEE Trans. Syst. Man Cybern. 1976, 6(6):448-452.
    • (1976) IEEE Trans. Syst. Man Cybern. , vol.6 , Issue.6 , pp. 448-452
    • Tomek, I.1
  • 44
    • 0031164017 scopus 로고    scopus 로고
    • Prototype selection for the nearest neighbour rule through proximity graphs
    • Sánchez J.S., Pla F., Ferri F.J. Prototype selection for the nearest neighbour rule through proximity graphs. Pattern Recognition Lett. 1997, 18:507-513.
    • (1997) Pattern Recognition Lett. , vol.18 , pp. 507-513
    • Sánchez, J.S.1    Pla, F.2    Ferri, F.J.3
  • 45
    • 0033883192 scopus 로고    scopus 로고
    • A new edited k-nearest neighbor rule in the pattern classification problem
    • Hattori K., Takahashi M. A new edited k-nearest neighbor rule in the pattern classification problem. Pattern Recognition 2000, 33(3):521-528.
    • (2000) Pattern Recognition , vol.33 , Issue.3 , pp. 521-528
    • Hattori, K.1    Takahashi, M.2
  • 47
    • 0029669422 scopus 로고    scopus 로고
    • A new definition of neighborhood of a point in multi-dimensional space
    • Chaudhuri B.B. A new definition of neighborhood of a point in multi-dimensional space. Pattern Recognition Lett. 1996, 17(1):11-17.
    • (1996) Pattern Recognition Lett. , vol.17 , Issue.1 , pp. 11-17
    • Chaudhuri, B.B.1
  • 48
    • 25144493576 scopus 로고    scopus 로고
    • A stochastic approach to Wilson's editing algorithm
    • Proceedings of the 2nd Iberian Conference on Pattern Recognition and Image Analysis
    • F. Vázquez, J. Sánchez, F. Pla, A stochastic approach to Wilson's editing algorithm, in: Proceedings of the 2nd Iberian Conference on Pattern Recognition and Image Analysis, 2005, pp. 35-42.
    • (2005) , pp. 35-42
    • Vázquez, F.1    Sánchez, J.2    Pla, F.3
  • 49
    • 0019279846 scopus 로고
    • On the edited nearest neighbor rule, in: Proceedings of the Fifth International Conference on Pattern Recognition
    • P.A. Devijver, J. Kittler, On the edited nearest neighbor rule, in: Proceedings of the Fifth International Conference on Pattern Recognition, 1980, pp. 72-80.
    • (1980) , pp. 72-80
    • Devijver, P.A.1    Kittler, J.2
  • 50
    • 0032597795 scopus 로고    scopus 로고
    • Consideration about sample-size sensitivity of a family of edited nearest-neighbor rules
    • Ferri F.J., Albert J.V., Vidal E. Consideration about sample-size sensitivity of a family of edited nearest-neighbor rules. IEEE Trans. Syst. Man Cybern. 1999, 29(4):667-672.
    • (1999) IEEE Trans. Syst. Man Cybern. , vol.29 , Issue.4 , pp. 667-672
    • Ferri, F.J.1    Albert, J.V.2    Vidal, E.3
  • 52
    • 34548677479 scopus 로고    scopus 로고
    • A lot of randomness is hiding in accuracy
    • Ben-David A. A lot of randomness is hiding in accuracy. Eng. Appl. Artif. Intell. 2007, 20:875-885.
    • (2007) Eng. Appl. Artif. Intell. , vol.20 , pp. 875-885
    • Ben-David, A.1
  • 55
    • 64549120231 scopus 로고    scopus 로고
    • A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability
    • García S., Fernández A., Luengo J., Herrera F. A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability. Soft Comput. 2009, 13(10):959-977.
    • (2009) Soft Comput. , vol.13 , Issue.10 , pp. 959-977
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 57
    • 58149287952 scopus 로고    scopus 로고
    • An extension on "Statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons
    • García S., Herrera F. An extension on "Statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons. J. Mach. Learn. Res. 2008, 9:2677-2694.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 2677-2694
    • García, S.1    Herrera, F.2
  • 58
    • 80053073212 scopus 로고    scopus 로고
    • Fuzzy-rough set based semi-supervised learning, in: 2011 IEEE International Conference on Fuzzy Systems (FUZZ)
    • N. Mac Parthalain, R. Jensen, Fuzzy-rough set based semi-supervised learning, in: 2011 IEEE International Conference on Fuzzy Systems (FUZZ), 2011, pp. 2465-2472.
    • (2011) , pp. 2465-2472
    • Mac Parthalain, N.1    Jensen, R.2
  • 59
    • 84872775741 scopus 로고    scopus 로고
    • On the use of evolutionary feature selection for improving fuzzy rough set based prototype selection
    • Derrac J., Verbiest N., García S., Cornelis C., Herrera F. On the use of evolutionary feature selection for improving fuzzy rough set based prototype selection. Soft Comput. 2013, 17:223-238.
    • (2013) Soft Comput. , vol.17 , pp. 223-238
    • Derrac, J.1    Verbiest, N.2    García, S.3    Cornelis, C.4    Herrera, F.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.