메뉴 건너뛰기




Volumn 1, Issue , 2007, Pages

A self-training semi-supervised support vector machine algorithm and its applications in brain computer interface

Author keywords

Brain computer interface (BCI); Convergence; P300; Semi supervised learning; Supporter vector machine (SVM)

Indexed keywords

ALGORITHMS; COMPUTATIONAL METHODS; CONVERGENCE OF NUMERICAL METHODS; DATA REDUCTION; USER INTERFACES;

EID: 34547552286     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2007.366697     Document Type: Conference Paper
Times cited : (22)

References (10)
  • 6
    • 1842843693 scopus 로고    scopus 로고
    • Co-trained support vector machines for large scale unstructured document classification using unlabeled data and syntactic information
    • S. Park, B. Zhang, "Co-trained support vector machines for large scale unstructured document classification using unlabeled data and syntactic information," Information Processing and Management, Vol. 40(3), pp. 421-439, 2004.
    • (2004) Information Processing and Management , vol.40 , Issue.3 , pp. 421-439
    • Park, S.1    Zhang, B.2
  • 10
    • 0034210646 scopus 로고    scopus 로고
    • The mental prosthesis: Assessing the speed of a P300-based brain-computer interface
    • E. Donchin, K. M. Spencer, and R. Wijesinghe, "The mental prosthesis: Assessing the speed of a P300-based brain-computer interface", IEEE Transactions on Rehabilitation Engineering, Vol. 8(1), pp. 174-179, 2000.
    • (2000) IEEE Transactions on Rehabilitation Engineering , vol.8 , Issue.1 , pp. 174-179
    • Donchin, E.1    Spencer, K.M.2    Wijesinghe, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.