-
1
-
-
9244243116
-
Semisupervised learning of classifiers: theory, algorithm, and their application to human-computer interaction
-
Cohen I., Cozman F.G., Sebe N., Cirelo M.C., Huang T.S. Semisupervised learning of classifiers: theory, algorithm, and their application to human-computer interaction. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26(12):1553-1567.
-
(2004)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.26
, Issue.12
, pp. 1553-1567
-
-
Cohen, I.1
Cozman, F.G.2
Sebe, N.3
Cirelo, M.C.4
Huang, T.S.5
-
2
-
-
33745456231
-
Semi-Supervised Learning Literature Survey
-
Computer Sciences Technical Report, University of Wisconsin, Madison
-
X. Zhu, Semi-Supervised Learning Literature Survey, Computer Sciences Technical Report, University of Wisconsin, Madison, 2006.
-
(2006)
-
-
Zhu, X.1
-
3
-
-
0042440878
-
A new semi-supervised EM algorithm for image retrieval
-
In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Madison, WI
-
A. Dong, B. Bhanu, A new semi-supervised EM algorithm for image retrieval, in: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Madison, WI, 2003, pp. 662-667.
-
(2003)
, pp. 662-667
-
-
Dong, A.1
Bhanu, B.2
-
4
-
-
69249235737
-
Image retrieval using nonlinear manifold embedding
-
Wang C., Zhao J., He X.F., Chen C., Bu J.J. Image retrieval using nonlinear manifold embedding. Neurocomputing 2009, 72:3922-3929.
-
(2009)
Neurocomputing
, vol.72
, pp. 3922-3929
-
-
Wang, C.1
Zhao, J.2
He, X.F.3
Chen, C.4
Bu, J.J.5
-
5
-
-
50649099635
-
Co-tracking using semi-supervised support vector machines
-
In: Proceedings of the IEEE International Conference on Computer Vision
-
F. Tang, S. Brennan, Q. Zhao, H. Tao, Co-tracking using semi-supervised support vector machines, in: Proceedings of the IEEE International Conference on Computer Vision, 2007, pp. 1-8.
-
(2007)
, pp. 1-8
-
-
Tang, F.1
Brennan, S.2
Zhao, Q.3
Tao, H.4
-
6
-
-
22944482762
-
Email answering assistance by semi-supervised text classification
-
Scheffer T. Email answering assistance by semi-supervised text classification. Intell. Data Anal. 2004, 8(5):481-493.
-
(2004)
Intell. Data Anal.
, vol.8
, Issue.5
, pp. 481-493
-
-
Scheffer, T.1
-
7
-
-
0031620208
-
Combining labeled and unlabeled data with co-training
-
In: Proceedings of the 11th Annual Conference on Computational Learning Theory
-
A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: Proceedings of the 11th Annual Conference on Computational Learning Theory, 1998, pp. 92-100.
-
(1998)
, pp. 92-100
-
-
Blum, A.1
Mitchell, T.2
-
8
-
-
0029487441
-
Program evolution for data mining
-
Teller A., Veloso M. Program evolution for data mining. Int. J. Expert Syst. 1995, 8:216-236.
-
(1995)
Int. J. Expert Syst.
, vol.8
, pp. 216-236
-
-
Teller, A.1
Veloso, M.2
-
9
-
-
77956708689
-
Semi-supervised learning by disagreement
-
Zhou Z.H., Li M. Semi-supervised learning by disagreement. Knowl. Inf. Syst. 2010, 24(3):415-439.
-
(2010)
Knowl. Inf. Syst.
, vol.24
, Issue.3
, pp. 415-439
-
-
Zhou, Z.H.1
Li, M.2
-
10
-
-
0007950880
-
Enhancing supervised learning with unlabeled data
-
In: Proceedings of the 17th International Conference on Machine Learning
-
S. Goldman, Y. Zhou, Enhancing supervised learning with unlabeled data, in: Proceedings of the 17th International Conference on Machine Learning, 2000, pp. 327-334.
-
(2000)
, pp. 327-334
-
-
Goldman, S.1
Zhou, Y.2
-
11
-
-
16244378563
-
Democratic co-learning
-
In: Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'04)
-
Y. Zhou, S. Goldman, Democratic co-learning, in: Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'04), 2004, pp. 594-202.
-
(2004)
, pp. 594-202
-
-
Zhou, Y.1
Goldman, S.2
-
12
-
-
10444221886
-
Diversity creation methods: a survey and categorization
-
Brown G., Wyatt J., Harris R., Yao X. Diversity creation methods: a survey and categorization. Inf. Fusion 2005, 6(1):5-20.
-
(2005)
Inf. Fusion
, vol.6
, Issue.1
, pp. 5-20
-
-
Brown, G.1
Wyatt, J.2
Harris, R.3
Yao, X.4
-
13
-
-
14844303546
-
Semisupervised learning from different information sources
-
Li T., Ogihara M. Semisupervised learning from different information sources. Knowl. Inf. Syst. 2005, 7(3):289-309.
-
(2005)
Knowl. Inf. Syst.
, vol.7
, Issue.3
, pp. 289-309
-
-
Li, T.1
Ogihara, M.2
-
14
-
-
80053403826
-
Ensemble methods in machine learning
-
Springer, Berlin
-
Dietterich T.G. Ensemble methods in machine learning. First International Workshop on Multiple Classifier Systems, Cagliari, Italy, Lecture Notes in Computer Science 2000, vol. 1857:1-15. Springer, Berlin.
-
(2000)
First International Workshop on Multiple Classifier Systems, Cagliari, Italy, Lecture Notes in Computer Science
, vol.1857
, pp. 1-15
-
-
Dietterich, T.G.1
-
15
-
-
37549018049
-
Top 10 algorithms in data mining
-
Wu X.D., Kumar V., et al. Top 10 algorithms in data mining. Knowl. Inf. Syst. 2007, 14(1):1-37.
-
(2007)
Knowl. Inf. Syst.
, vol.14
, Issue.1
, pp. 1-37
-
-
Wu, X.D.1
Kumar, V.2
-
16
-
-
15844429144
-
Online adaptive policies for ensemble classifiers
-
Dimitrakakis C., Bengio S. Online adaptive policies for ensemble classifiers. Neurocomputing 2005, 64:211-221.
-
(2005)
Neurocomputing
, vol.64
, pp. 211-221
-
-
Dimitrakakis, C.1
Bengio, S.2
-
17
-
-
62449310901
-
Co-training by committee: a new semi-supervised learning framework
-
In: Proceedings of the IEEE International Conference on Data Mining Workshops
-
M.F.A. Hady, F. Schwenker, Co-training by committee: a new semi-supervised learning framework, in: Proceedings of the IEEE International Conference on Data Mining Workshops, 2008.
-
(2008)
-
-
Hady, M.F.A.1
Schwenker, F.2
-
18
-
-
78649934709
-
UCI machine learning repository
-
A. Frank, A. Asuncion, UCI machine learning repository, URL, 2010. http://archive.ics.uci.edu/ml.
-
(2010)
-
-
Frank, A.1
Asuncion, A.2
-
19
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
Dempster A.P., Laird N.M., Rubin D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 1977, 39(1):1-38.
-
(1977)
J. R. Stat. Soc. Ser. B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
20
-
-
84898975526
-
Convex method for transduction
-
In: NIPS 16
-
T. De Bie, N. Cristianini, Convex method for transduction, in: NIPS 16, 2004.
-
(2004)
-
-
De Bie, T.1
Cristianini, N.2
-
21
-
-
0010805362
-
Learning from labeled and unlabeled data using graph mincuts
-
In: Proceedings of the 18th International Conference on Machine Learning
-
A. Blum, S. Chawla, Learning from labeled and unlabeled data using graph mincuts, in: Proceedings of the 18th International Conference on Machine Learning, 2001, pp. 19-26.
-
(2001)
, pp. 19-26
-
-
Blum, A.1
Chawla, S.2
-
22
-
-
85141919230
-
Unsupervised word sense disambiguation rivaling supervised methods
-
In: Proceedings of the 33rd Annual Meeting of the Association on Computational Linguistics
-
D. Yarowsky, Unsupervised word sense disambiguation rivaling supervised methods, in: Proceedings of the 33rd Annual Meeting of the Association on Computational Linguistics, 1995, pp. 189-196.
-
(1995)
, pp. 189-196
-
-
Yarowsky, D.1
-
23
-
-
15544385219
-
Co-training with a single natural feature set applied to email classification
-
In: Proceedings of the 2004 IEEE/WIC/ACM International Conference on Web Intelligence, IEEE Computer Society Washington, DC
-
J. Chan, I. Koprinska, J. Poon, Co-training with a single natural feature set applied to email classification, in: Proceedings of the 2004 IEEE/WIC/ACM International Conference on Web Intelligence, IEEE Computer Society Washington, DC, 2004, pp. 586-589.
-
(2004)
, pp. 586-589
-
-
Chan, J.1
Koprinska, I.2
Poon, J.3
-
24
-
-
84899008485
-
PAC generalization bounds for co-training
-
In: Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA
-
S. Dasgupta, M. Littman, D. McAllester, PAC generalization bounds for co-training, in: Advances in Neural Information Processing Systems, vol. 14, MIT Press, Cambridge, MA, 2002, pp. 375-382.
-
(2002)
, vol.14
, pp. 375-382
-
-
Dasgupta, S.1
Littman, M.2
McAllester, D.3
-
25
-
-
84898930761
-
Co-training and expansion: towards bridging theory and practice
-
MIT Press, Cambridge
-
Balcan M.F., Blum A., Yang K. Co-training and expansion: towards bridging theory and practice. Advances in Neural Information Processing Systems 2005, vol. 17:89-96. MIT Press, Cambridge.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
, pp. 89-96
-
-
Balcan, M.F.1
Blum, A.2
Yang, K.3
-
27
-
-
28244448186
-
Tri-training: exploiting unlabeled data using three classifiers
-
Zhou Z.H., Li M. Tri-training: exploiting unlabeled data using three classifiers. IEEE Trans. Knowl. Data Eng. 2005, 17(11):1529-1541.
-
(2005)
IEEE Trans. Knowl. Data Eng.
, vol.17
, Issue.11
, pp. 1529-1541
-
-
Zhou, Z.H.1
Li, M.2
-
28
-
-
85119383022
-
Unsupervised models for named entity classification
-
In: Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora, College Park, MD
-
M. Collins, Y. Singer, Unsupervised models for named entity classification, in: Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora, College Park, MD, 1999, pp. 100-110.
-
(1999)
, pp. 100-110
-
-
Collins, M.1
Singer, Y.2
-
29
-
-
18744408629
-
Combining labeled and unlabeled data for text classification with a large number of categories
-
In: Proceedings of the IEEE International Conference on Data Mining
-
R. Ghani, Combining labeled and unlabeled data for text classification with a large number of categories, in: Proceedings of the IEEE International Conference on Data Mining, 2001.
-
(2001)
-
-
Ghani, R.1
-
30
-
-
0344982834
-
Unsupervised improvement of visual detectors using co-training
-
In: Proceedings of the Ninth IEEE International Conference on Computer Vision
-
A. Levin, P. Viola, Y. Freund, Unsupervised improvement of visual detectors using co-training, in: Proceedings of the Ninth IEEE International Conference on Computer Vision, 2003, pp. 626-633.
-
(2003)
, pp. 626-633
-
-
Levin, A.1
Viola, P.2
Freund, Y.3
-
31
-
-
26944445546
-
Applying co-training methods to statistical parsing
-
In: Proceedings of the 2nd Annual Meeting of the North American Chapter of the Association for Computational Linguistics, Pittsburgh, PA
-
A. Sarkar, Applying co-training methods to statistical parsing, in: Proceedings of the 2nd Annual Meeting of the North American Chapter of the Association for Computational Linguistics, Pittsburgh, PA, 2001, pp. 95-102.
-
(2001)
, pp. 95-102
-
-
Sarkar, A.1
-
32
-
-
36249007597
-
Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples
-
Li M., Zhou Z.H. Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples. IEEE Trans. Syst. Man Cybern. A 2007, 37(6):1088-1098.
-
(2007)
IEEE Trans. Syst. Man Cybern. A
, vol.37
, Issue.6
, pp. 1088-1098
-
-
Li, M.1
Zhou, Z.H.2
-
33
-
-
1242285091
-
Active sampling for class probability estimation and ranking
-
Saar-Tsechansky M., Provost F. Active sampling for class probability estimation and ranking. Mach. Learn. 2004, 54:153-178.
-
(2004)
Mach. Learn.
, vol.54
, pp. 153-178
-
-
Saar-Tsechansky, M.1
Provost, F.2
-
34
-
-
0035789316
-
Learning and making decisions when costs and probabilities are both unknown
-
In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
-
B. Zadrozny, C. Elkan, Learning and making decisions when costs and probabilities are both unknown, in: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2001, pp. 204-212.
-
(2001)
, pp. 204-212
-
-
Zadrozny, B.1
Elkan, C.2
-
35
-
-
84945318292
-
Class probability estimation and cost-sensitive classification decisions
-
In: Proceedings of the 13th European Conference on Machine Learning
-
D. Margineantu, Class probability estimation and cost-sensitive classification decisions, in: Proceedings of the 13th European Conference on Machine Learning, 2002, pp. 270-281.
-
(2002)
, pp. 270-281
-
-
Margineantu, D.1
-
36
-
-
2442545501
-
Local estimation of posterior class probabilities to minimize classification errors
-
Guerrero-Curieses A., Cid-Sueiro J., Alaiz-Rodriguez R., Figueiras-Vidal A. Local estimation of posterior class probabilities to minimize classification errors. IEEE Trans. Neural Networks 2004, 15(2):309-317.
-
(2004)
IEEE Trans. Neural Networks
, vol.15
, Issue.2
, pp. 309-317
-
-
Guerrero-Curieses, A.1
Cid-Sueiro, J.2
Alaiz-Rodriguez, R.3
Figueiras-Vidal, A.4
-
37
-
-
13844266947
-
Estimating the posterior probabilities using the K-nearest neighbor rule
-
Atiya A. Estimating the posterior probabilities using the K-nearest neighbor rule. Neural Comput. 2005, 17:731-740.
-
(2005)
Neural Comput.
, vol.17
, pp. 731-740
-
-
Atiya, A.1
-
38
-
-
79959418224
-
DCPE Co-training: co-training based on diversity of class probability estimation
-
In: Proceedings of the International Joint Conference on Neural Networks.
-
J. Xu, H. He, H. Man, DCPE Co-training: co-training based on diversity of class probability estimation, in: Proceedings of the 2010 International Joint Conference on Neural Networks.
-
(2010)
-
-
Xu, J.1
He, H.2
Man, H.3
-
39
-
-
40349086052
-
Naive Bayes classification given probability estimation trees
-
In: Proceedings of the 5th International Conference on Machine Learning and Applications
-
Z. Qin, Naive Bayes classification given probability estimation trees, in: Proceedings of the 5th International Conference on Machine Learning and Applications, 2006.
-
(2006)
-
-
Qin, Z.1
-
40
-
-
0030355327
-
Improved probability estimation with neural network models
-
In: Proceedings of the International Conference on Spoken Language Systems
-
W. Wei, E. Barnard, M. Fanty, Improved probability estimation with neural network models, in: Proceedings of the International Conference on Spoken Language Systems, 1996, pp. 498-501.
-
(1996)
, pp. 498-501
-
-
Wei, W.1
Barnard, E.2
Fanty, M.3
-
42
-
-
0016509650
-
K-Nearest-neighbor Bayes-risk estimation
-
Fukunaga K., Hostetler L. k-Nearest-neighbor Bayes-risk estimation. IEEE Trans. Inf. Theory 1975, 21(3):285-293.
-
(1975)
IEEE Trans. Inf. Theory
, vol.21
, Issue.3
, pp. 285-293
-
-
Fukunaga, K.1
Hostetler, L.2
-
43
-
-
0000492326
-
Learning from noisy examples
-
Angluin D., Laird P. Learning from noisy examples. Mach. Learn. 1988, 2:343-370.
-
(1988)
Mach. Learn.
, vol.2
, pp. 343-370
-
-
Angluin, D.1
Laird, P.2
-
44
-
-
38049125937
-
Analyzing co-training style algorithms
-
In: Proceedings of the 18th European Conference on Machine Learning, Warsaw, Poland
-
W. Wang, Z.H. Zhou, Analyzing co-training style algorithms, in: Proceedings of the 18th European Conference on Machine Learning, Warsaw, Poland, 2007, pp. 454-465.
-
(2007)
, pp. 454-465
-
-
Wang, W.1
Zhou, Z.H.2
-
45
-
-
0036643079
-
Metric-based methods for adaptive model selection and regularization
-
(Special Issue on New Methods for Model Selection and Model Combination)
-
Schuurmans D., Southey F. Metric-based methods for adaptive model selection and regularization. Mach. Learn. 2001, 48:51-84. (Special Issue on New Methods for Model Selection and Model Combination).
-
(2001)
Mach. Learn.
, vol.48
, pp. 51-84
-
-
Schuurmans, D.1
Southey, F.2
-
46
-
-
29644438050
-
Statistical comparisons of classifiers over multiple datasets
-
Demsar J. Statistical comparisons of classifiers over multiple datasets. J. Mach. Learn. Res. 2006, 7:1-30.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
47
-
-
56049128204
-
listen and learn: Co-training on captioned images and videos
-
In: Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Antwerp, Belgium
-
S. Gupta, J. Kim, K. Grauman, R. Mooney, Watch, listen and learn: co-training on captioned images and videos, in: Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Antwerp, Belgium, 2008, pp. 457-472.
-
(2008)
, pp. 457-472
-
-
Gupta, S.1
Kim, J.2
Grauman, R.3
Watch, M.4
|