메뉴 건너뛰기




Volumn 86, Issue , 2012, Pages 75-85

DCPE co-training for classification

Author keywords

Class probability estimation; Classification; Co training; Diversity; Machine learning; Semi supervised learning

Indexed keywords

CLASS PROBABILITIES; CO-TRAINING; DIVERSITY; MACHINE-LEARNING; SEMI-SUPERVISED LEARNING;

EID: 84862789001     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.01.006     Document Type: Article
Times cited : (63)

References (47)
  • 1
    • 9244243116 scopus 로고    scopus 로고
    • Semisupervised learning of classifiers: theory, algorithm, and their application to human-computer interaction
    • Cohen I., Cozman F.G., Sebe N., Cirelo M.C., Huang T.S. Semisupervised learning of classifiers: theory, algorithm, and their application to human-computer interaction. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26(12):1553-1567.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.12 , pp. 1553-1567
    • Cohen, I.1    Cozman, F.G.2    Sebe, N.3    Cirelo, M.C.4    Huang, T.S.5
  • 2
    • 33745456231 scopus 로고    scopus 로고
    • Semi-Supervised Learning Literature Survey
    • Computer Sciences Technical Report, University of Wisconsin, Madison
    • X. Zhu, Semi-Supervised Learning Literature Survey, Computer Sciences Technical Report, University of Wisconsin, Madison, 2006.
    • (2006)
    • Zhu, X.1
  • 3
    • 0042440878 scopus 로고    scopus 로고
    • A new semi-supervised EM algorithm for image retrieval
    • In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Madison, WI
    • A. Dong, B. Bhanu, A new semi-supervised EM algorithm for image retrieval, in: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Madison, WI, 2003, pp. 662-667.
    • (2003) , pp. 662-667
    • Dong, A.1    Bhanu, B.2
  • 4
    • 69249235737 scopus 로고    scopus 로고
    • Image retrieval using nonlinear manifold embedding
    • Wang C., Zhao J., He X.F., Chen C., Bu J.J. Image retrieval using nonlinear manifold embedding. Neurocomputing 2009, 72:3922-3929.
    • (2009) Neurocomputing , vol.72 , pp. 3922-3929
    • Wang, C.1    Zhao, J.2    He, X.F.3    Chen, C.4    Bu, J.J.5
  • 5
    • 50649099635 scopus 로고    scopus 로고
    • Co-tracking using semi-supervised support vector machines
    • In: Proceedings of the IEEE International Conference on Computer Vision
    • F. Tang, S. Brennan, Q. Zhao, H. Tao, Co-tracking using semi-supervised support vector machines, in: Proceedings of the IEEE International Conference on Computer Vision, 2007, pp. 1-8.
    • (2007) , pp. 1-8
    • Tang, F.1    Brennan, S.2    Zhao, Q.3    Tao, H.4
  • 6
    • 22944482762 scopus 로고    scopus 로고
    • Email answering assistance by semi-supervised text classification
    • Scheffer T. Email answering assistance by semi-supervised text classification. Intell. Data Anal. 2004, 8(5):481-493.
    • (2004) Intell. Data Anal. , vol.8 , Issue.5 , pp. 481-493
    • Scheffer, T.1
  • 7
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • In: Proceedings of the 11th Annual Conference on Computational Learning Theory
    • A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: Proceedings of the 11th Annual Conference on Computational Learning Theory, 1998, pp. 92-100.
    • (1998) , pp. 92-100
    • Blum, A.1    Mitchell, T.2
  • 8
    • 0029487441 scopus 로고
    • Program evolution for data mining
    • Teller A., Veloso M. Program evolution for data mining. Int. J. Expert Syst. 1995, 8:216-236.
    • (1995) Int. J. Expert Syst. , vol.8 , pp. 216-236
    • Teller, A.1    Veloso, M.2
  • 9
    • 77956708689 scopus 로고    scopus 로고
    • Semi-supervised learning by disagreement
    • Zhou Z.H., Li M. Semi-supervised learning by disagreement. Knowl. Inf. Syst. 2010, 24(3):415-439.
    • (2010) Knowl. Inf. Syst. , vol.24 , Issue.3 , pp. 415-439
    • Zhou, Z.H.1    Li, M.2
  • 10
    • 0007950880 scopus 로고    scopus 로고
    • Enhancing supervised learning with unlabeled data
    • In: Proceedings of the 17th International Conference on Machine Learning
    • S. Goldman, Y. Zhou, Enhancing supervised learning with unlabeled data, in: Proceedings of the 17th International Conference on Machine Learning, 2000, pp. 327-334.
    • (2000) , pp. 327-334
    • Goldman, S.1    Zhou, Y.2
  • 11
    • 16244378563 scopus 로고    scopus 로고
    • Democratic co-learning
    • In: Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'04)
    • Y. Zhou, S. Goldman, Democratic co-learning, in: Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'04), 2004, pp. 594-202.
    • (2004) , pp. 594-202
    • Zhou, Y.1    Goldman, S.2
  • 12
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: a survey and categorization
    • Brown G., Wyatt J., Harris R., Yao X. Diversity creation methods: a survey and categorization. Inf. Fusion 2005, 6(1):5-20.
    • (2005) Inf. Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 13
    • 14844303546 scopus 로고    scopus 로고
    • Semisupervised learning from different information sources
    • Li T., Ogihara M. Semisupervised learning from different information sources. Knowl. Inf. Syst. 2005, 7(3):289-309.
    • (2005) Knowl. Inf. Syst. , vol.7 , Issue.3 , pp. 289-309
    • Li, T.1    Ogihara, M.2
  • 15
    • 37549018049 scopus 로고    scopus 로고
    • Top 10 algorithms in data mining
    • Wu X.D., Kumar V., et al. Top 10 algorithms in data mining. Knowl. Inf. Syst. 2007, 14(1):1-37.
    • (2007) Knowl. Inf. Syst. , vol.14 , Issue.1 , pp. 1-37
    • Wu, X.D.1    Kumar, V.2
  • 16
    • 15844429144 scopus 로고    scopus 로고
    • Online adaptive policies for ensemble classifiers
    • Dimitrakakis C., Bengio S. Online adaptive policies for ensemble classifiers. Neurocomputing 2005, 64:211-221.
    • (2005) Neurocomputing , vol.64 , pp. 211-221
    • Dimitrakakis, C.1    Bengio, S.2
  • 17
    • 62449310901 scopus 로고    scopus 로고
    • Co-training by committee: a new semi-supervised learning framework
    • In: Proceedings of the IEEE International Conference on Data Mining Workshops
    • M.F.A. Hady, F. Schwenker, Co-training by committee: a new semi-supervised learning framework, in: Proceedings of the IEEE International Conference on Data Mining Workshops, 2008.
    • (2008)
    • Hady, M.F.A.1    Schwenker, F.2
  • 18
    • 78649934709 scopus 로고    scopus 로고
    • UCI machine learning repository
    • A. Frank, A. Asuncion, UCI machine learning repository, URL, 2010. http://archive.ics.uci.edu/ml.
    • (2010)
    • Frank, A.1    Asuncion, A.2
  • 19
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster A.P., Laird N.M., Rubin D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 1977, 39(1):1-38.
    • (1977) J. R. Stat. Soc. Ser. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 20
    • 84898975526 scopus 로고    scopus 로고
    • Convex method for transduction
    • In: NIPS 16
    • T. De Bie, N. Cristianini, Convex method for transduction, in: NIPS 16, 2004.
    • (2004)
    • De Bie, T.1    Cristianini, N.2
  • 21
    • 0010805362 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data using graph mincuts
    • In: Proceedings of the 18th International Conference on Machine Learning
    • A. Blum, S. Chawla, Learning from labeled and unlabeled data using graph mincuts, in: Proceedings of the 18th International Conference on Machine Learning, 2001, pp. 19-26.
    • (2001) , pp. 19-26
    • Blum, A.1    Chawla, S.2
  • 22
    • 85141919230 scopus 로고
    • Unsupervised word sense disambiguation rivaling supervised methods
    • In: Proceedings of the 33rd Annual Meeting of the Association on Computational Linguistics
    • D. Yarowsky, Unsupervised word sense disambiguation rivaling supervised methods, in: Proceedings of the 33rd Annual Meeting of the Association on Computational Linguistics, 1995, pp. 189-196.
    • (1995) , pp. 189-196
    • Yarowsky, D.1
  • 23
    • 15544385219 scopus 로고    scopus 로고
    • Co-training with a single natural feature set applied to email classification
    • In: Proceedings of the 2004 IEEE/WIC/ACM International Conference on Web Intelligence, IEEE Computer Society Washington, DC
    • J. Chan, I. Koprinska, J. Poon, Co-training with a single natural feature set applied to email classification, in: Proceedings of the 2004 IEEE/WIC/ACM International Conference on Web Intelligence, IEEE Computer Society Washington, DC, 2004, pp. 586-589.
    • (2004) , pp. 586-589
    • Chan, J.1    Koprinska, I.2    Poon, J.3
  • 24
    • 84899008485 scopus 로고    scopus 로고
    • PAC generalization bounds for co-training
    • In: Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA
    • S. Dasgupta, M. Littman, D. McAllester, PAC generalization bounds for co-training, in: Advances in Neural Information Processing Systems, vol. 14, MIT Press, Cambridge, MA, 2002, pp. 375-382.
    • (2002) , vol.14 , pp. 375-382
    • Dasgupta, S.1    Littman, M.2    McAllester, D.3
  • 25
    • 84898930761 scopus 로고    scopus 로고
    • Co-training and expansion: towards bridging theory and practice
    • MIT Press, Cambridge
    • Balcan M.F., Blum A., Yang K. Co-training and expansion: towards bridging theory and practice. Advances in Neural Information Processing Systems 2005, vol. 17:89-96. MIT Press, Cambridge.
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 89-96
    • Balcan, M.F.1    Blum, A.2    Yang, K.3
  • 27
    • 28244448186 scopus 로고    scopus 로고
    • Tri-training: exploiting unlabeled data using three classifiers
    • Zhou Z.H., Li M. Tri-training: exploiting unlabeled data using three classifiers. IEEE Trans. Knowl. Data Eng. 2005, 17(11):1529-1541.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.11 , pp. 1529-1541
    • Zhou, Z.H.1    Li, M.2
  • 28
    • 85119383022 scopus 로고    scopus 로고
    • Unsupervised models for named entity classification
    • In: Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora, College Park, MD
    • M. Collins, Y. Singer, Unsupervised models for named entity classification, in: Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora, College Park, MD, 1999, pp. 100-110.
    • (1999) , pp. 100-110
    • Collins, M.1    Singer, Y.2
  • 29
    • 18744408629 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data for text classification with a large number of categories
    • In: Proceedings of the IEEE International Conference on Data Mining
    • R. Ghani, Combining labeled and unlabeled data for text classification with a large number of categories, in: Proceedings of the IEEE International Conference on Data Mining, 2001.
    • (2001)
    • Ghani, R.1
  • 30
    • 0344982834 scopus 로고    scopus 로고
    • Unsupervised improvement of visual detectors using co-training
    • In: Proceedings of the Ninth IEEE International Conference on Computer Vision
    • A. Levin, P. Viola, Y. Freund, Unsupervised improvement of visual detectors using co-training, in: Proceedings of the Ninth IEEE International Conference on Computer Vision, 2003, pp. 626-633.
    • (2003) , pp. 626-633
    • Levin, A.1    Viola, P.2    Freund, Y.3
  • 31
    • 26944445546 scopus 로고    scopus 로고
    • Applying co-training methods to statistical parsing
    • In: Proceedings of the 2nd Annual Meeting of the North American Chapter of the Association for Computational Linguistics, Pittsburgh, PA
    • A. Sarkar, Applying co-training methods to statistical parsing, in: Proceedings of the 2nd Annual Meeting of the North American Chapter of the Association for Computational Linguistics, Pittsburgh, PA, 2001, pp. 95-102.
    • (2001) , pp. 95-102
    • Sarkar, A.1
  • 32
    • 36249007597 scopus 로고    scopus 로고
    • Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples
    • Li M., Zhou Z.H. Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples. IEEE Trans. Syst. Man Cybern. A 2007, 37(6):1088-1098.
    • (2007) IEEE Trans. Syst. Man Cybern. A , vol.37 , Issue.6 , pp. 1088-1098
    • Li, M.1    Zhou, Z.H.2
  • 33
    • 1242285091 scopus 로고    scopus 로고
    • Active sampling for class probability estimation and ranking
    • Saar-Tsechansky M., Provost F. Active sampling for class probability estimation and ranking. Mach. Learn. 2004, 54:153-178.
    • (2004) Mach. Learn. , vol.54 , pp. 153-178
    • Saar-Tsechansky, M.1    Provost, F.2
  • 34
    • 0035789316 scopus 로고    scopus 로고
    • Learning and making decisions when costs and probabilities are both unknown
    • In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    • B. Zadrozny, C. Elkan, Learning and making decisions when costs and probabilities are both unknown, in: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2001, pp. 204-212.
    • (2001) , pp. 204-212
    • Zadrozny, B.1    Elkan, C.2
  • 35
    • 84945318292 scopus 로고    scopus 로고
    • Class probability estimation and cost-sensitive classification decisions
    • In: Proceedings of the 13th European Conference on Machine Learning
    • D. Margineantu, Class probability estimation and cost-sensitive classification decisions, in: Proceedings of the 13th European Conference on Machine Learning, 2002, pp. 270-281.
    • (2002) , pp. 270-281
    • Margineantu, D.1
  • 37
    • 13844266947 scopus 로고    scopus 로고
    • Estimating the posterior probabilities using the K-nearest neighbor rule
    • Atiya A. Estimating the posterior probabilities using the K-nearest neighbor rule. Neural Comput. 2005, 17:731-740.
    • (2005) Neural Comput. , vol.17 , pp. 731-740
    • Atiya, A.1
  • 38
    • 79959418224 scopus 로고    scopus 로고
    • DCPE Co-training: co-training based on diversity of class probability estimation
    • In: Proceedings of the International Joint Conference on Neural Networks.
    • J. Xu, H. He, H. Man, DCPE Co-training: co-training based on diversity of class probability estimation, in: Proceedings of the 2010 International Joint Conference on Neural Networks.
    • (2010)
    • Xu, J.1    He, H.2    Man, H.3
  • 39
    • 40349086052 scopus 로고    scopus 로고
    • Naive Bayes classification given probability estimation trees
    • In: Proceedings of the 5th International Conference on Machine Learning and Applications
    • Z. Qin, Naive Bayes classification given probability estimation trees, in: Proceedings of the 5th International Conference on Machine Learning and Applications, 2006.
    • (2006)
    • Qin, Z.1
  • 40
    • 0030355327 scopus 로고    scopus 로고
    • Improved probability estimation with neural network models
    • In: Proceedings of the International Conference on Spoken Language Systems
    • W. Wei, E. Barnard, M. Fanty, Improved probability estimation with neural network models, in: Proceedings of the International Conference on Spoken Language Systems, 1996, pp. 498-501.
    • (1996) , pp. 498-501
    • Wei, W.1    Barnard, E.2    Fanty, M.3
  • 41
  • 42
    • 0016509650 scopus 로고
    • K-Nearest-neighbor Bayes-risk estimation
    • Fukunaga K., Hostetler L. k-Nearest-neighbor Bayes-risk estimation. IEEE Trans. Inf. Theory 1975, 21(3):285-293.
    • (1975) IEEE Trans. Inf. Theory , vol.21 , Issue.3 , pp. 285-293
    • Fukunaga, K.1    Hostetler, L.2
  • 43
    • 0000492326 scopus 로고
    • Learning from noisy examples
    • Angluin D., Laird P. Learning from noisy examples. Mach. Learn. 1988, 2:343-370.
    • (1988) Mach. Learn. , vol.2 , pp. 343-370
    • Angluin, D.1    Laird, P.2
  • 44
    • 38049125937 scopus 로고    scopus 로고
    • Analyzing co-training style algorithms
    • In: Proceedings of the 18th European Conference on Machine Learning, Warsaw, Poland
    • W. Wang, Z.H. Zhou, Analyzing co-training style algorithms, in: Proceedings of the 18th European Conference on Machine Learning, Warsaw, Poland, 2007, pp. 454-465.
    • (2007) , pp. 454-465
    • Wang, W.1    Zhou, Z.H.2
  • 45
    • 0036643079 scopus 로고    scopus 로고
    • Metric-based methods for adaptive model selection and regularization
    • (Special Issue on New Methods for Model Selection and Model Combination)
    • Schuurmans D., Southey F. Metric-based methods for adaptive model selection and regularization. Mach. Learn. 2001, 48:51-84. (Special Issue on New Methods for Model Selection and Model Combination).
    • (2001) Mach. Learn. , vol.48 , pp. 51-84
    • Schuurmans, D.1    Southey, F.2
  • 46
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple datasets
    • Demsar J. Statistical comparisons of classifiers over multiple datasets. J. Mach. Learn. Res. 2006, 7:1-30.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demsar, J.1
  • 47
    • 56049128204 scopus 로고    scopus 로고
    • listen and learn: Co-training on captioned images and videos
    • In: Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Antwerp, Belgium
    • S. Gupta, J. Kim, K. Grauman, R. Mooney, Watch, listen and learn: co-training on captioned images and videos, in: Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Antwerp, Belgium, 2008, pp. 457-472.
    • (2008) , pp. 457-472
    • Gupta, S.1    Kim, J.2    Grauman, R.3    Watch, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.