-
1
-
-
34547765443
-
A semisupervised support vector machines algorithm for BCI systems
-
Qin J., Li Y., Sun W. A semisupervised support vector machines algorithm for BCI systems. Comput. Intell. Neurosci. 2007, 1687-5265.
-
(2007)
Comput. Intell. Neurosci.
, pp. 1687-5265
-
-
Qin, J.1
Li, Y.2
Sun, W.3
-
2
-
-
43249086679
-
A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system
-
Li Y., Guan C., Li H., Chin Z. A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system. Pattern Recognition Lett. 2008, 29:1285-1294.
-
(2008)
Pattern Recognition Lett.
, vol.29
, pp. 1285-1294
-
-
Li, Y.1
Guan, C.2
Li, H.3
Chin, Z.4
-
3
-
-
78649293868
-
Adaptation in p300 brain-computer interfaces: a two-classifier cotraining approach
-
Panicker R.C., Sadasivan P., Sun Y. Adaptation in p300 brain-computer interfaces: a two-classifier cotraining approach. IEEE Trans. Biomed. Eng. 2010, 57(12):2927-2935.
-
(2010)
IEEE Trans. Biomed. Eng.
, vol.57
, Issue.12
, pp. 2927-2935
-
-
Panicker, R.C.1
Sadasivan, P.2
Sun, Y.3
-
4
-
-
49849091363
-
Transductive SVM for reducing the training effort in BCI
-
Liao X., Yao D., Li C. Transductive SVM for reducing the training effort in BCI. J. Neural Eng. 2007, 4:246-254.
-
(2007)
J. Neural Eng.
, vol.4
, pp. 246-254
-
-
Liao, X.1
Yao, D.2
Li, C.3
-
6
-
-
33749253228
-
On structural risk minimization or overall risk in a problem of pattern recognition
-
Vapnik V., Sterin A. On structural risk minimization or overall risk in a problem of pattern recognition. Autom. Remote Control 1977, 10:1495-1503.
-
(1977)
Autom. Remote Control
, vol.10
, pp. 1495-1503
-
-
Vapnik, V.1
Sterin, A.2
-
7
-
-
51949086172
-
Semi-upervised classification by low density separation
-
Tenth International Workshop on Artificial Intelligence and Statistics (AISTATS 2005), Barbados
-
O. Chapelle, A. Zien, Semi-supervised classification by low density separation, in: Tenth International Workshop on Artificial Intelligence and Statistics (AISTATS 2005), Barbados, 2005, pp. 57-64.
-
(2005)
, pp. 57-64
-
-
Chapelle, O.1
Zien, A.2
-
8
-
-
0001938951
-
Transductive inference for text classification using support vector machines
-
Proceedings of the Sixteenth International Conference on Machine Learning (ICML 99), Bled, Slovenia
-
T. Joachims, Transductive inference for text classification using support vector machines, in: Proceedings of the Sixteenth International Conference on Machine Learning (ICML 99), Bled, Slovenia, 1999, pp. 200-209.
-
(1999)
, pp. 200-209
-
-
Joachims, T.1
-
9
-
-
26444592207
-
Learning from Labeled and Unlabeled Data with Label Propagation
-
Technical Report CMU-CALD-02-107, Carnegie Mellon University
-
X. Zhu, Z. Ghahramani, Learning from Labeled and Unlabeled Data with Label Propagation, Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002.
-
(2002)
-
-
Zhu, X.1
Ghahramani, Z.2
-
10
-
-
1942484960
-
Transductive learning via spectral graph partitioning, in: Proceedings of the Twentieth International Conference on Machine Learning (ICML 2003)
-
ICML, Washington, USA
-
T. Joachims, et al., Transductive learning via spectral graph partitioning, in: Proceedings of the Twentieth International Conference on Machine Learning (ICML 2003), ICML, Washington, USA, 2003, pp. 290-297.
-
(2003)
, pp. 290-297
-
-
Joachims, T.1
-
11
-
-
33750729556
-
Manifold regularization: a geometric framework for learning from label and unlabeled examples
-
Belkin M., Niyogi P., Sindhwani V. Manifold regularization: a geometric framework for learning from label and unlabeled examples. J. Mach. Learning Res. 2006, 7:2399-2434.
-
(2006)
J. Mach. Learning Res.
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
12
-
-
41549144249
-
Optimization techniques for semi-supervised support vector machines
-
Chapelle O., Sindhwani V., Keerthi S.S. Optimization techniques for semi-supervised support vector machines. J. Mach. Learning Res. 2008, 9:203-233.
-
(2008)
J. Mach. Learning Res.
, vol.9
, pp. 203-233
-
-
Chapelle, O.1
Sindhwani, V.2
Keerthi, S.S.3
-
13
-
-
70349871686
-
Semiboost: boosting for semi-supervised learning
-
Mallapragada P.K., Jin R., Jain A.K., Liu Y. Semiboost: boosting for semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31(11):2000-2014.
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.31
, Issue.11
, pp. 2000-2014
-
-
Mallapragada, P.K.1
Jin, R.2
Jain, A.K.3
Liu, Y.4
-
14
-
-
77951252234
-
Multi-manifold semi-supervised learning
-
Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS 2009), Florida, USA
-
A. Goldberg, X. Zhu, A. Singh, Z. Xu, R. Nowak, Multi-manifold semi-supervised learning, in: Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS 2009), Florida, USA, 2009.
-
(2009)
-
-
Goldberg, A.1
Zhu, X.2
Singh, A.3
Xu, Z.4
Nowak, R.5
-
15
-
-
34547976677
-
Kernel selection for semi-supervised kernel machines
-
Proceedings of the Twenty-fourth International Conference on Machine Learning (ICML 2007), Corvalis, Oregon, USA
-
G. Dai, D. Yeung, Kernel selection for semi-supervised kernel machines, in: Proceedings of the Twenty-fourth International Conference on Machine Learning (ICML 2007), Corvalis, Oregon, USA, 2007, pp. 185-192.
-
(2007)
, pp. 185-192
-
-
Dai, G.1
Yeung, D.2
-
16
-
-
84863357165
-
Adaptive regularization for transductive support vector machine
-
Y. Bengio, D. Schuurmans, J. Lafferty, C.K.I. Williams, A. Culotta (Eds.), Proceedings of the Twenty-third Annual Conference on Neural Information Processing Systems (NIPS'09), Vancouver, Canada
-
Z. Xu, R. Jin, J. Zhu, I. King, M. Lyu, Z. Yang, Adaptive regularization for transductive support vector machine, in: Y. Bengio, D. Schuurmans, J. Lafferty, C.K.I. Williams, A. Culotta (Eds.), Proceedings of the Twenty-third Annual Conference on Neural Information Processing Systems (NIPS'09), Vancouver, Canada, 2009, pp. 2125-2133.
-
(2009)
, pp. 2125-2133
-
-
Xu, Z.1
Jin, R.2
Zhu, J.3
King, I.4
Lyu, M.5
Yang, Z.6
-
17
-
-
57249084590
-
Simplemkl
-
Rakotomamonjy A., Bach F., Canu S., Grandvalet Y. Simplemkl. J. Mach. Learning Res. 2008, 9:2491-2521.
-
(2008)
J. Mach. Learning Res.
, vol.9
, pp. 2491-2521
-
-
Rakotomamonjy, A.1
Bach, F.2
Canu, S.3
Grandvalet, Y.4
-
18
-
-
0032081028
-
Dc optimization algorithms for solving the trust region subproblem
-
Tao P.D., An L.T.H. Dc optimization algorithms for solving the trust region subproblem. SIAM J. Optim. 1998, 8(2):476-505.
-
(1998)
SIAM J. Optim.
, vol.8
, Issue.2
, pp. 476-505
-
-
Tao, P.D.1
An, L.T.H.2
-
19
-
-
33751273678
-
Robust EEG channel selection across subjects for brain computer interfaces
-
Michael S., Navin L.T., Thilo H., Martin B., Jeremy H.N., Niels B., Wolfgang R., Bernhard S. Robust EEG channel selection across subjects for brain computer interfaces. EURASIP J. Appl. Signal Process. 2005, 2005(19):3103-3112.
-
(2005)
EURASIP J. Appl. Signal Process.
, vol.2005
, Issue.19
, pp. 3103-3112
-
-
Michael, S.1
Navin, L.T.2
Thilo, H.3
Martin, B.4
Jeremy, H.N.5
Niels, B.6
Wolfgang, R.7
Bernhard, S.8
-
20
-
-
84898958346
-
Semi-supervised support vector machines
-
Advances in Neural Information Processing Systems, MIT Press
-
K.P. Bennett, A. Demiriz, Semi-supervised support vector machines, in: Advances in Neural Information Processing Systems, MIT Press, 1998, pp. 368-374.
-
(1998)
, pp. 368-374
-
-
Bennett, K.P.1
Demiriz, A.2
-
21
-
-
0005977840
-
Learning with Labeled and Unlabeled Data
-
Technical Report, Institute for ANC, Edinburgh, UK
-
M. Seeger, Learning with Labeled and Unlabeled Data, Technical Report, Institute for ANC, Edinburgh, UK, 2000. http://lapmal.epfl.ch/papers/review.pdf.
-
(2000)
-
-
Seeger, M.1
-
22
-
-
34250761401
-
Deterministic annealing for semi-supervised kernel machines
-
International Conference on Machine Learning, doi:10.1145/1143844.1143950.
-
V. Sindhwani, S.S. Keerthi, O. Chapelle, Deterministic annealing for semi-supervised kernel machines, in: International Conference on Machine Learning, 2006, pp. 841-848. doi:10.1145/1143844.1143950.
-
(2006)
, pp. 841-848
-
-
Sindhwani, V.1
Keerthi, S.S.2
Chapelle, O.3
-
23
-
-
64149104410
-
On efficient large margin semisupervised learning: method and theory
-
Wang J., Shen X., Pan W. On efficient large margin semisupervised learning: method and theory. J. Mach. Learning Res. 2009, 10:719-742. 10.1145/1577069.1577094.
-
(2009)
J. Mach. Learning Res.
, vol.10
, pp. 719-742
-
-
Wang, J.1
Shen, X.2
Pan, W.3
-
24
-
-
33747128180
-
Large scale transductive SVMs
-
Collobert R., Sinz F., Weston J., Bottou L. Large scale transductive SVMs. J. Mach. Learning Res. 2006, 7:1687-1712.
-
(2006)
J. Mach. Learning Res.
, vol.7
, pp. 1687-1712
-
-
Collobert, R.1
Sinz, F.2
Weston, J.3
Bottou, L.4
-
25
-
-
65449158879
-
Cuts3vm: a fast semi-supervised svm algorithm, in: Proceeding of the Fourteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
-
KDD'08, ACM, New York, NY, USA
-
B. Zhao, F. Wang, C. Zhang, Cuts3vm: a fast semi-supervised svm algorithm, in: Proceeding of the Fourteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'08, ACM, New York, NY, USA, 2008, pp. 830-838.
-
(2008)
, pp. 830-838
-
-
Zhao, B.1
Wang, F.2
Zhang, C.3
-
26
-
-
31844440904
-
Beyond the point cloud: from transductive to semi-supervised learning
-
Proceedings of the Twenty-second International Conference on Machine Learning (ICML 2005), ACM Press
-
V. Sindhwani, P. Niyogi, M. Belkin, Beyond the point cloud: from transductive to semi-supervised learning, in: Proceedings of the Twenty-second International Conference on Machine Learning (ICML 2005), ACM Press, 2005, pp. 824-831.
-
(2005)
, pp. 824-831
-
-
Sindhwani, V.1
Niyogi, P.2
Belkin, M.3
-
27
-
-
77956547440
-
Simple and efficient multiple kernel learning by group lasso, in: Proceedings of the Twenty-seventh International Conference on Machine Learning (ICML 2010)
-
Haifa, Israel
-
Z. Xu, R. Jin, H. Yang, I. King, M. Lyu, Simple and efficient multiple kernel learning by group lasso, in: Proceedings of the Twenty-seventh International Conference on Machine Learning (ICML 2010), Haifa, Israel, 2010, pp. 1175-1182.
-
(2010)
, pp. 1175-1182
-
-
Xu, Z.1
Jin, R.2
Yang, H.3
King, I.4
Lyu, M.5
-
28
-
-
79955848223
-
Lp-norm multiple kernel learning
-
Kloft M., Brefeld U., Sonnenburg S., Zien A. Lp-norm multiple kernel learning. J. Mach. Learning Res. 2011, 12:953-997.
-
(2011)
J. Mach. Learning Res.
, vol.12
, pp. 953-997
-
-
Kloft, M.1
Brefeld, U.2
Sonnenburg, S.3
Zien, A.4
-
29
-
-
0037686659
-
The concave-convex procedure
-
Yuille A.L., Rangarajan A. The concave-convex procedure. Neural Comput. 2003, 15(4):915-936.
-
(2003)
Neural Comput.
, vol.15
, Issue.4
, pp. 915-936
-
-
Yuille, A.L.1
Rangarajan, A.2
-
30
-
-
84862623799
-
Kernel methods for missing variables
-
Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics
-
A.J. Smola, S. Vishwanathan, T. Hofmann, Kernel methods for missing variables, in: Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, 2005, pp. 325-332.
-
(2005)
, pp. 325-332
-
-
Smola, A.J.1
Vishwanathan, S.2
Hofmann, T.3
|