메뉴 건너뛰기




Volumn 90, Issue , 2012, Pages 46-58

A multiple kernel framework for inductive semi-supervised SVM learning

Author keywords

BCI application; DC programming; Inductive semi supervised learning; Multiple kernel learning; Transductive SVM

Indexed keywords

BENCHMARK DATA; D-C PROGRAMMING; MULTIPLE KERNEL LEARNING; MULTIPLE KERNELS; SEMI-SUPERVISED; SEMI-SUPERVISED ALGORITHM; SEMI-SUPERVISED LEARNING; TRANSDUCTIVE SVM;

EID: 84860231071     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.12.036     Document Type: Article
Times cited : (54)

References (31)
  • 1
    • 34547765443 scopus 로고    scopus 로고
    • A semisupervised support vector machines algorithm for BCI systems
    • Qin J., Li Y., Sun W. A semisupervised support vector machines algorithm for BCI systems. Comput. Intell. Neurosci. 2007, 1687-5265.
    • (2007) Comput. Intell. Neurosci. , pp. 1687-5265
    • Qin, J.1    Li, Y.2    Sun, W.3
  • 2
    • 43249086679 scopus 로고    scopus 로고
    • A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system
    • Li Y., Guan C., Li H., Chin Z. A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system. Pattern Recognition Lett. 2008, 29:1285-1294.
    • (2008) Pattern Recognition Lett. , vol.29 , pp. 1285-1294
    • Li, Y.1    Guan, C.2    Li, H.3    Chin, Z.4
  • 3
    • 78649293868 scopus 로고    scopus 로고
    • Adaptation in p300 brain-computer interfaces: a two-classifier cotraining approach
    • Panicker R.C., Sadasivan P., Sun Y. Adaptation in p300 brain-computer interfaces: a two-classifier cotraining approach. IEEE Trans. Biomed. Eng. 2010, 57(12):2927-2935.
    • (2010) IEEE Trans. Biomed. Eng. , vol.57 , Issue.12 , pp. 2927-2935
    • Panicker, R.C.1    Sadasivan, P.2    Sun, Y.3
  • 4
    • 49849091363 scopus 로고    scopus 로고
    • Transductive SVM for reducing the training effort in BCI
    • Liao X., Yao D., Li C. Transductive SVM for reducing the training effort in BCI. J. Neural Eng. 2007, 4:246-254.
    • (2007) J. Neural Eng. , vol.4 , pp. 246-254
    • Liao, X.1    Yao, D.2    Li, C.3
  • 5
    • 70350563352 scopus 로고    scopus 로고
    • Semi-supervised learning based on manifold in BCI
    • Zhong J., Lei X., Yao D. Semi-supervised learning based on manifold in BCI. J. Electron. Sci. Technol. China 2009, 7(1):22-26.
    • (2009) J. Electron. Sci. Technol. China , vol.7 , Issue.1 , pp. 22-26
    • Zhong, J.1    Lei, X.2    Yao, D.3
  • 6
    • 33749253228 scopus 로고
    • On structural risk minimization or overall risk in a problem of pattern recognition
    • Vapnik V., Sterin A. On structural risk minimization or overall risk in a problem of pattern recognition. Autom. Remote Control 1977, 10:1495-1503.
    • (1977) Autom. Remote Control , vol.10 , pp. 1495-1503
    • Vapnik, V.1    Sterin, A.2
  • 7
    • 51949086172 scopus 로고    scopus 로고
    • Semi-upervised classification by low density separation
    • Tenth International Workshop on Artificial Intelligence and Statistics (AISTATS 2005), Barbados
    • O. Chapelle, A. Zien, Semi-supervised classification by low density separation, in: Tenth International Workshop on Artificial Intelligence and Statistics (AISTATS 2005), Barbados, 2005, pp. 57-64.
    • (2005) , pp. 57-64
    • Chapelle, O.1    Zien, A.2
  • 8
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • Proceedings of the Sixteenth International Conference on Machine Learning (ICML 99), Bled, Slovenia
    • T. Joachims, Transductive inference for text classification using support vector machines, in: Proceedings of the Sixteenth International Conference on Machine Learning (ICML 99), Bled, Slovenia, 1999, pp. 200-209.
    • (1999) , pp. 200-209
    • Joachims, T.1
  • 9
    • 26444592207 scopus 로고    scopus 로고
    • Learning from Labeled and Unlabeled Data with Label Propagation
    • Technical Report CMU-CALD-02-107, Carnegie Mellon University
    • X. Zhu, Z. Ghahramani, Learning from Labeled and Unlabeled Data with Label Propagation, Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002.
    • (2002)
    • Zhu, X.1    Ghahramani, Z.2
  • 10
    • 1942484960 scopus 로고    scopus 로고
    • Transductive learning via spectral graph partitioning, in: Proceedings of the Twentieth International Conference on Machine Learning (ICML 2003)
    • ICML, Washington, USA
    • T. Joachims, et al., Transductive learning via spectral graph partitioning, in: Proceedings of the Twentieth International Conference on Machine Learning (ICML 2003), ICML, Washington, USA, 2003, pp. 290-297.
    • (2003) , pp. 290-297
    • Joachims, T.1
  • 11
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: a geometric framework for learning from label and unlabeled examples
    • Belkin M., Niyogi P., Sindhwani V. Manifold regularization: a geometric framework for learning from label and unlabeled examples. J. Mach. Learning Res. 2006, 7:2399-2434.
    • (2006) J. Mach. Learning Res. , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 12
    • 41549144249 scopus 로고    scopus 로고
    • Optimization techniques for semi-supervised support vector machines
    • Chapelle O., Sindhwani V., Keerthi S.S. Optimization techniques for semi-supervised support vector machines. J. Mach. Learning Res. 2008, 9:203-233.
    • (2008) J. Mach. Learning Res. , vol.9 , pp. 203-233
    • Chapelle, O.1    Sindhwani, V.2    Keerthi, S.S.3
  • 14
    • 77951252234 scopus 로고    scopus 로고
    • Multi-manifold semi-supervised learning
    • Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS 2009), Florida, USA
    • A. Goldberg, X. Zhu, A. Singh, Z. Xu, R. Nowak, Multi-manifold semi-supervised learning, in: Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS 2009), Florida, USA, 2009.
    • (2009)
    • Goldberg, A.1    Zhu, X.2    Singh, A.3    Xu, Z.4    Nowak, R.5
  • 15
    • 34547976677 scopus 로고    scopus 로고
    • Kernel selection for semi-supervised kernel machines
    • Proceedings of the Twenty-fourth International Conference on Machine Learning (ICML 2007), Corvalis, Oregon, USA
    • G. Dai, D. Yeung, Kernel selection for semi-supervised kernel machines, in: Proceedings of the Twenty-fourth International Conference on Machine Learning (ICML 2007), Corvalis, Oregon, USA, 2007, pp. 185-192.
    • (2007) , pp. 185-192
    • Dai, G.1    Yeung, D.2
  • 16
    • 84863357165 scopus 로고    scopus 로고
    • Adaptive regularization for transductive support vector machine
    • Y. Bengio, D. Schuurmans, J. Lafferty, C.K.I. Williams, A. Culotta (Eds.), Proceedings of the Twenty-third Annual Conference on Neural Information Processing Systems (NIPS'09), Vancouver, Canada
    • Z. Xu, R. Jin, J. Zhu, I. King, M. Lyu, Z. Yang, Adaptive regularization for transductive support vector machine, in: Y. Bengio, D. Schuurmans, J. Lafferty, C.K.I. Williams, A. Culotta (Eds.), Proceedings of the Twenty-third Annual Conference on Neural Information Processing Systems (NIPS'09), Vancouver, Canada, 2009, pp. 2125-2133.
    • (2009) , pp. 2125-2133
    • Xu, Z.1    Jin, R.2    Zhu, J.3    King, I.4    Lyu, M.5    Yang, Z.6
  • 18
    • 0032081028 scopus 로고    scopus 로고
    • Dc optimization algorithms for solving the trust region subproblem
    • Tao P.D., An L.T.H. Dc optimization algorithms for solving the trust region subproblem. SIAM J. Optim. 1998, 8(2):476-505.
    • (1998) SIAM J. Optim. , vol.8 , Issue.2 , pp. 476-505
    • Tao, P.D.1    An, L.T.H.2
  • 20
    • 84898958346 scopus 로고    scopus 로고
    • Semi-supervised support vector machines
    • Advances in Neural Information Processing Systems, MIT Press
    • K.P. Bennett, A. Demiriz, Semi-supervised support vector machines, in: Advances in Neural Information Processing Systems, MIT Press, 1998, pp. 368-374.
    • (1998) , pp. 368-374
    • Bennett, K.P.1    Demiriz, A.2
  • 21
    • 0005977840 scopus 로고    scopus 로고
    • Learning with Labeled and Unlabeled Data
    • Technical Report, Institute for ANC, Edinburgh, UK
    • M. Seeger, Learning with Labeled and Unlabeled Data, Technical Report, Institute for ANC, Edinburgh, UK, 2000. http://lapmal.epfl.ch/papers/review.pdf.
    • (2000)
    • Seeger, M.1
  • 22
    • 34250761401 scopus 로고    scopus 로고
    • Deterministic annealing for semi-supervised kernel machines
    • International Conference on Machine Learning, doi:10.1145/1143844.1143950.
    • V. Sindhwani, S.S. Keerthi, O. Chapelle, Deterministic annealing for semi-supervised kernel machines, in: International Conference on Machine Learning, 2006, pp. 841-848. doi:10.1145/1143844.1143950.
    • (2006) , pp. 841-848
    • Sindhwani, V.1    Keerthi, S.S.2    Chapelle, O.3
  • 23
    • 64149104410 scopus 로고    scopus 로고
    • On efficient large margin semisupervised learning: method and theory
    • Wang J., Shen X., Pan W. On efficient large margin semisupervised learning: method and theory. J. Mach. Learning Res. 2009, 10:719-742. 10.1145/1577069.1577094.
    • (2009) J. Mach. Learning Res. , vol.10 , pp. 719-742
    • Wang, J.1    Shen, X.2    Pan, W.3
  • 25
    • 65449158879 scopus 로고    scopus 로고
    • Cuts3vm: a fast semi-supervised svm algorithm, in: Proceeding of the Fourteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    • KDD'08, ACM, New York, NY, USA
    • B. Zhao, F. Wang, C. Zhang, Cuts3vm: a fast semi-supervised svm algorithm, in: Proceeding of the Fourteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'08, ACM, New York, NY, USA, 2008, pp. 830-838.
    • (2008) , pp. 830-838
    • Zhao, B.1    Wang, F.2    Zhang, C.3
  • 26
    • 31844440904 scopus 로고    scopus 로고
    • Beyond the point cloud: from transductive to semi-supervised learning
    • Proceedings of the Twenty-second International Conference on Machine Learning (ICML 2005), ACM Press
    • V. Sindhwani, P. Niyogi, M. Belkin, Beyond the point cloud: from transductive to semi-supervised learning, in: Proceedings of the Twenty-second International Conference on Machine Learning (ICML 2005), ACM Press, 2005, pp. 824-831.
    • (2005) , pp. 824-831
    • Sindhwani, V.1    Niyogi, P.2    Belkin, M.3
  • 27
    • 77956547440 scopus 로고    scopus 로고
    • Simple and efficient multiple kernel learning by group lasso, in: Proceedings of the Twenty-seventh International Conference on Machine Learning (ICML 2010)
    • Haifa, Israel
    • Z. Xu, R. Jin, H. Yang, I. King, M. Lyu, Simple and efficient multiple kernel learning by group lasso, in: Proceedings of the Twenty-seventh International Conference on Machine Learning (ICML 2010), Haifa, Israel, 2010, pp. 1175-1182.
    • (2010) , pp. 1175-1182
    • Xu, Z.1    Jin, R.2    Yang, H.3    King, I.4    Lyu, M.5
  • 29
    • 0037686659 scopus 로고    scopus 로고
    • The concave-convex procedure
    • Yuille A.L., Rangarajan A. The concave-convex procedure. Neural Comput. 2003, 15(4):915-936.
    • (2003) Neural Comput. , vol.15 , Issue.4 , pp. 915-936
    • Yuille, A.L.1    Rangarajan, A.2
  • 30
    • 84862623799 scopus 로고    scopus 로고
    • Kernel methods for missing variables
    • Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics
    • A.J. Smola, S. Vishwanathan, T. Hofmann, Kernel methods for missing variables, in: Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, 2005, pp. 325-332.
    • (2005) , pp. 325-332
    • Smola, A.J.1    Vishwanathan, S.2    Hofmann, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.