-
1
-
-
0030288435
-
A unified approach to noise removal, image enhancement, and shape recovery
-
Malladi R., and Sethian J. A unified approach to noise removal, image enhancement, and shape recovery. IEEE Transactions on Image Processing 5 11 (1996) 1554-1568
-
(1996)
IEEE Transactions on Image Processing
, vol.5
, Issue.11
, pp. 1554-1568
-
-
Malladi, R.1
Sethian, J.2
-
2
-
-
33746217152
-
High-throughput analysis of multi-spectral images of breast cancer tissue
-
Adiga U., Malladi R., Fernandez-Gonzalez R., and de Solorzano C.O. High-throughput analysis of multi-spectral images of breast cancer tissue. IEEE Transactions on Image Processing 15 8 (2006) 2259-2268
-
(2006)
IEEE Transactions on Image Processing
, vol.15
, Issue.8
, pp. 2259-2268
-
-
Adiga, U.1
Malladi, R.2
Fernandez-Gonzalez, R.3
de Solorzano, C.O.4
-
3
-
-
15344346435
-
-
SIAM, Philadelphia, PA
-
Chan T., and Shen J. Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods (2005), SIAM, Philadelphia, PA
-
(2005)
Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods
-
-
Chan, T.1
Shen, J.2
-
4
-
-
85049184544
-
-
G. Aubert, P. Kornprobst, Mathematical Problems in Image Processing. Partial Differential Equations and the Calculus of Variations, second ed., Applied Mathematical Sciences, vol. 147, Springer, Berlin, 2006.
-
G. Aubert, P. Kornprobst, Mathematical Problems in Image Processing. Partial Differential Equations and the Calculus of Variations, second ed., Applied Mathematical Sciences, vol. 147, Springer, Berlin, 2006.
-
-
-
-
5
-
-
33750729556
-
Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
-
Belkin M., Niyogi P., and Sindhwani V. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research 7 (2006) 2399-2434
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
6
-
-
59149093336
-
-
MIT Press, Cambridge, MA, USA pp. 221-232 (Section 3.13)
-
Zhou D., and Schölkopf B. Discrete Regularization, Semi-Supervised Learning, Adaptive Computation and Machine Learning (2006), MIT Press, Cambridge, MA, USA pp. 221-232 (Section 3.13)
-
(2006)
Discrete Regularization, Semi-Supervised Learning, Adaptive Computation and Machine Learning
-
-
Zhou, D.1
Schölkopf, B.2
-
7
-
-
33746476985
-
Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization
-
Lafon S., and Lee A.B. Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization. IEEE Transactions on Pattern Analysis and Machine Intelligence 28 9 (2006) 1393-1403
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.9
, pp. 1393-1403
-
-
Lafon, S.1
Lee, A.B.2
-
8
-
-
33845581114
-
-
F. Wang, C. Zhang, H.C. Shen, J. Wang, Semi-supervised classification using linear neighborhood propagation, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE Conference Proceedings, vol. 1, IEEE Computer Society, Silver Spring, MD, 2006, pp. 160-167.
-
F. Wang, C. Zhang, H.C. Shen, J. Wang, Semi-supervised classification using linear neighborhood propagation, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE Conference Proceedings, vol. 1, IEEE Computer Society, Silver Spring, MD, 2006, pp. 160-167.
-
-
-
-
10
-
-
71549156285
-
-
V.-T. Ta, O. Lézoray, A. Elmoataz, Graph based semi and unsupervised classification and segmentation of microscopic images, in: The 7th IEEE International Symposium on Signal Processing and Information Technology, ISSPIT, 2007, pp. 1177-1182.
-
V.-T. Ta, O. Lézoray, A. Elmoataz, Graph based semi and unsupervised classification and segmentation of microscopic images, in: The 7th IEEE International Symposium on Signal Processing and Information Technology, ISSPIT, 2007, pp. 1177-1182.
-
-
-
-
11
-
-
59149094559
-
-
S. Schüpp, A. Elmoataz, M.-J. Fadili, D. Bloyet, Fast statistical level sets image segmentation for biomedical applications, in: Scale-Space, 2001, pp. 3380-3888.
-
S. Schüpp, A. Elmoataz, M.-J. Fadili, D. Bloyet, Fast statistical level sets image segmentation for biomedical applications, in: Scale-Space, 2001, pp. 3380-3888.
-
-
-
-
12
-
-
0036650721
-
Cooperation of color pixel classification and color watershed: a study for microscopic images
-
Lézoray O., and Cardot H. Cooperation of color pixel classification and color watershed: a study for microscopic images. IEEE Transactions on Image Processing 11 7 (2002) 783-789
-
(2002)
IEEE Transactions on Image Processing
, vol.11
, Issue.7
, pp. 783-789
-
-
Lézoray, O.1
Cardot, H.2
-
13
-
-
45949105032
-
Nonlocal discrete regularization an weighted graphs: a framework for image and manifolds processing
-
Elmoataz A., Lézoray O., and Bougleux S. Nonlocal discrete regularization an weighted graphs: a framework for image and manifolds processing. IEEE Transactions on Image Processing 17 7 (2008) 1047-1060
-
(2008)
IEEE Transactions on Image Processing
, vol.17
, Issue.7
, pp. 1047-1060
-
-
Elmoataz, A.1
Lézoray, O.2
Bougleux, S.3
-
15
-
-
21244490106
-
A color object recognition scheme: application to cellular sorting
-
Lézoray O., Elmoataz A., and Cardot H. A color object recognition scheme: application to cellular sorting. Machine Vision and Applications 14 3 (2003) 166-171
-
(2003)
Machine Vision and Applications
, vol.14
, Issue.3
, pp. 166-171
-
-
Lézoray, O.1
Elmoataz, A.2
Cardot, H.3
-
16
-
-
59149097948
-
-
A. Renouf, R. Clouard, M. Revenu, How to formulate image processing applications, in: International Conference on Computer Vision Systems, 2007, p. 10.
-
A. Renouf, R. Clouard, M. Revenu, How to formulate image processing applications, in: International Conference on Computer Vision Systems, 2007, p. 10.
-
-
-
-
17
-
-
59149084719
-
-
R. Diestel, Graph Theory, Graduate Texts in Mathematics, vol. 173, Springer, Berlin, 2005.
-
R. Diestel, Graph Theory, Graduate Texts in Mathematics, vol. 173, Springer, Berlin, 2005.
-
-
-
-
19
-
-
0033878402
-
Regions adjacency graph applied to color image segmentation
-
Trémeau A., and Colantoni P. Regions adjacency graph applied to color image segmentation. IEEE Transactions on Image Processing 9 4 (2000) 735-744
-
(2000)
IEEE Transactions on Image Processing
, vol.9
, Issue.4
, pp. 735-744
-
-
Trémeau, A.1
Colantoni, P.2
-
20
-
-
34548583274
-
A tutorial on spectral clustering
-
von Luxburg U. A tutorial on spectral clustering. Statistics and Computing 17 4 (2007) 395-416
-
(2007)
Statistics and Computing
, vol.17
, Issue.4
, pp. 395-416
-
-
von Luxburg, U.1
-
21
-
-
37849010649
-
Parameterless discrete regularization on graphs for color image filtering
-
Kamel M., and Campilho A. (Eds), Springer, Berlin
-
Lézoray O., Bougleux S., and Elmoataz A. Parameterless discrete regularization on graphs for color image filtering. In: Kamel M., and Campilho A. (Eds). Image Analysis and Recognition, Lecture Notes in Computer Science vol. 4633 (2007), Springer, Berlin 46-57
-
(2007)
Image Analysis and Recognition, Lecture Notes in Computer Science
, vol.4633
, pp. 46-57
-
-
Lézoray, O.1
Bougleux, S.2
Elmoataz, A.3
-
22
-
-
59149096518
-
-
V.-T. Ta, S. Bougleux, A. Elmoataz, O. Lézoray, Nonlocal anisotropic discrete regularization for image, data filtering and clustering, Technical Report hal-00187165, Université de Caen Basse-Normadie, GREYC, HAL, October 2007.
-
V.-T. Ta, S. Bougleux, A. Elmoataz, O. Lézoray, Nonlocal anisotropic discrete regularization for image, data filtering and clustering, Technical Report hal-00187165, Université de Caen Basse-Normadie, GREYC, HAL, October 2007.
-
-
-
-
23
-
-
0345414167
-
-
X. Ren, J. Malik, Learning a classification model for segmentation, in: International Conference on Computer Vision, 2003, pp. 10-17.
-
X. Ren, J. Malik, Learning a classification model for segmentation, in: International Conference on Computer Vision, 2003, pp. 10-17.
-
-
-
-
24
-
-
59149087000
-
-
F. Meyer, An overview of morphological segmentation, in: 7th International Workshop on Combinatorial Image Analysis, 2000, pp. 119-142.
-
F. Meyer, An overview of morphological segmentation, in: 7th International Workshop on Combinatorial Image Analysis, 2000, pp. 119-142.
-
-
-
-
27
-
-
48149102535
-
-
S. Derivaux, S. Lefevre, C. Wemmert, J. Korczak, On machine learning in watershed segmentation, in: IEEE International Workshop on Machine Learning in Signal Processing (MLSP), 2007, pp. 187-192.
-
S. Derivaux, S. Lefevre, C. Wemmert, J. Korczak, On machine learning in watershed segmentation, in: IEEE International Workshop on Machine Learning in Signal Processing (MLSP), 2007, pp. 187-192.
-
-
-
-
29
-
-
50649084500
-
-
A. Sinop, L. Grady, A seeded image segmentation framework unifying graph cuts and random walker which yields a new algorithm, in: ICCV, 2007, pp. 1-8.
-
A. Sinop, L. Grady, A seeded image segmentation framework unifying graph cuts and random walker which yields a new algorithm, in: ICCV, 2007, pp. 1-8.
-
-
-
-
30
-
-
27244449175
-
-
D. Zhou, B. Schölkopf, Regularization on discrete spaces, in: Pattern Recognition, Proceedings of the 27th DAGM Symposium, Lecture Notes in Computer Science, vol. 3663, Springer, Berlin, 2005, pp. 361-368.
-
D. Zhou, B. Schölkopf, Regularization on discrete spaces, in: Pattern Recognition, Proceedings of the 27th DAGM Symposium, Lecture Notes in Computer Science, vol. 3663, Springer, Berlin, 2005, pp. 361-368.
-
-
-
-
31
-
-
33749252873
-
-
MIT press, Cambridge, MA
-
Chapelle O., Schölkopf B., and Zien A. Semi-Supervised Learning (2006), MIT press, Cambridge, MA
-
(2006)
Semi-Supervised Learning
-
-
Chapelle, O.1
Schölkopf, B.2
Zien, A.3
-
33
-
-
59149094275
-
-
M. Dumont, R. Marée, P. Geurts, L. Wehenkel, Random subwindows and multiple output decision trees for generic image annotation, in: 6th Annual Machine Learning Conference of Belgium and The Netherlands, 2007.
-
M. Dumont, R. Marée, P. Geurts, L. Wehenkel, Random subwindows and multiple output decision trees for generic image annotation, in: 6th Annual Machine Learning Conference of Belgium and The Netherlands, 2007.
-
-
-
|