메뉴 건너뛰기




Volumn , Issue , 2010, Pages 2732-2735

A multiple instance learning approach toward optimal classification of pathology slides

Author keywords

[No Author keywords available]

Indexed keywords

BREAST LESION; CLASSIFICATION ACCURACY; CLASSIFIER PERFORMANCE; COMPUTER ASSISTED; DESCRIPTORS; EXPERIMENTAL STUDIES; LARGE MARGIN PRINCIPLE; LOSS FUNCTIONS; MULTIPLE INSTANCE LEARNING; MULTIPLE REGIONS; OPTIMAL CLASSIFICATION; REGIONS OF INTEREST; SUB-OPTIMAL PERFORMANCE; TRAINING TECHNIQUES;

EID: 78149479937     PISSN: 10514651     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICPR.2010.669     Document Type: Conference Paper
Times cited : (45)

References (9)
  • 2
    • 84864047275 scopus 로고    scopus 로고
    • Multiple instance learning for computer aided diagnosis
    • G. Fung, M. Dundar, B. Krishnapuram, and R. B. Rao. Multiple instance learning for computer aided diagnosis. In NIPS, pages 425-432, 2006.
    • (2006) NIPS , pp. 425-432
    • Fung, G.1    Dundar, M.2    Krishnapuram, B.3    Rao, R.B.4
  • 3
    • 0020524559 scopus 로고
    • A method of comparing the areas under receiver operating characteristic curves derived from the same cases
    • J. A. Hanley and B. J. McNeil. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology, 148:839-843, 1983.
    • (1983) Radiology , vol.148 , pp. 839-843
    • Hanley, J.A.1    McNeil, B.J.2
  • 5
    • 59349094544 scopus 로고    scopus 로고
    • Computer-aided evaluation of neuroblastoma on whole-slide histology images: Classifying grade of neuroblastic differentiation
    • J. Kong, O. Sertel, H. Shimada, K. L. Boyer, J. H. Saltz, and M. N. Gurcan. Computer-aided evaluation of neuroblastoma on whole-slide histology images: Classifying grade of neuroblastic differentiation. Pattern Recogn., 42(6):1080-1092, 2009.
    • (2009) Pattern Recogn. , vol.42 , Issue.6 , pp. 1080-1092
    • Kong, J.1    Sertel, O.2    Shimada, H.3    Boyer, K.L.4    Saltz, J.H.5    Gurcan, M.N.6
  • 7
    • 62349141165 scopus 로고    scopus 로고
    • Histopathological image analysis using model-based intermediate representations and color texture: Follicular lymphoma grading
    • O. Sertel, J. Kong, U. V. Catalyurek, G. Lozanski, J. H. Saltz, and M. N. Gurcan. Histopathological image analysis using model-based intermediate representations and color texture: Follicular lymphoma grading. Journal of Signal Processing Systems, 55(1-3):169-183, 2009.
    • (2009) Journal of Signal Processing Systems , vol.55 , Issue.1-3 , pp. 169-183
    • Sertel, O.1    Kong, J.2    Catalyurek, U.V.3    Lozanski, G.4    Saltz, J.H.5    Gurcan, M.N.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.