메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1049-1056

Effective 3D object detection and regression using probabilistic segmentation features in CT images

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER AIDED DIAGNOSIS; FEATURE EXTRACTION; IMAGE SEGMENTATION; MEDICAL IMAGING; OBJECT DETECTION; OBJECT RECOGNITION; REGRESSION ANALYSIS;

EID: 80052892770     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2011.5995359     Document Type: Conference Paper
Times cited : (29)

References (29)
  • 2
    • 21644448339 scopus 로고    scopus 로고
    • Cad for colonography: A tool to address a growing need
    • 1049
    • L. Bogoni, P. Cathier, and et al. Cad for colonography: A tool to address a growing need. The British Journal of Radiology, 78:57-62, 2005. 1049
    • (2005) The British Journal of Radiology , vol.78 , pp. 57-62
    • Bogoni, L.1    Cathier, P.2
  • 3
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • 1052
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Proc. IEEE CVPR, pages 886-893, 2005. 1052
    • (2005) Proc. IEEE CVPR , pp. 886-893
    • Dalal, N.1    Triggs, B.2
  • 4
    • 84864047275 scopus 로고    scopus 로고
    • Multiple instance learning for computer aided diagnosis
    • 1050
    • G. Fung, M. Dundar, B. Krishnapuram, and B. Rao. Multiple instance learning for computer aided diagnosis. In NIPS, pages 425-432, 2006. 1050
    • (2006) NIPS , pp. 425-432
    • Fung, G.1    Dundar, M.2    Krishnapuram, B.3    Rao, B.4
  • 7
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • 1053
    • A. Hoerl and R. Kennard. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1):5567, 1970. 1053
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 5567
    • Hoerl, A.1    Kennard, R.2
  • 8
    • 79551686459 scopus 로고    scopus 로고
    • Symmetric curvature patterns for colonic polyp detection
    • 1049, 1050, 1051
    • A. Jerebko, S. Lakare, P. Cathier, S. Periaswamy, and L. Bogoni. Symmetric curvature patterns for colonic polyp detection. In MICCAI, pages 169-176, 2006. 1049, 1050, 1051
    • (2006) MICCAI , pp. 169-176
    • Jerebko, A.1    Lakare, S.2    Cathier, P.3    Periaswamy, S.4    Bogoni, L.5
  • 9
    • 33845591650 scopus 로고    scopus 로고
    • The design of high-level features for photo quality assessment
    • 1050
    • Y. Ke, X. Tang, and F. Jing. The design of high-level features for photo quality assessment. In CVPR, 2006. 1050
    • (2006) CVPR
    • Ke, Y.1    Tang, X.2    Jing, F.3
  • 10
    • 39749124915 scopus 로고    scopus 로고
    • Robust object detection with interleaved categorization and segmentation
    • 1049
    • B. Leibe, A. Leonardis, and B. Schiele. Robust object detection with interleaved categorization and segmentation. IJCV, 2008. 1049
    • (2008) IJCV
    • Leibe, B.1    Leonardis, A.2    Schiele, B.3
  • 11
    • 52249083278 scopus 로고    scopus 로고
    • Hierarchical, learning-based automatic liver segmentation
    • 1049
    • H. Ling, S. Zhou, Y. Zheng, and et al. Hierarchical, learning-based automatic liver segmentation. In Proc. IEEE CVPR, 2008. 1049
    • (2008) Proc. IEEE CVPR
    • Ling, H.1    Zhou, S.2    Zheng, Y.3
  • 12
    • 51949111393 scopus 로고    scopus 로고
    • Accurate polyp segmentation for 3d ct colonography using multi-staged probabilistic binary learning and compositional model
    • 1049, 1050, 1051, 1052, 1053, 1054, 1056
    • L. Lu, A. Barbu, M. Wolf, J. Liang, L. Bogoni, M. Salganicoff, and D. Comaniciu. Accurate polyp segmentation for 3d ct colonography using multi-staged probabilistic binary learning and compositional model. In IEEE CVPR, 2008. 1049, 1050, 1051, 1052, 1053, 1054, 1056
    • (2008) IEEE CVPR
    • Lu, L.1    Barbu, A.2    Wolf, M.3    Liang, J.4    Bogoni, L.5    Salganicoff, M.6    Comaniciu, D.7
  • 13
    • 0003425255 scopus 로고
    • Ensemble learning and evidence maximization
    • 1053
    • D. MacKay. Ensemble learning and evidence maximization. In NIPS, 1995. 1053
    • (1995) NIPS
    • MacKay, D.1
  • 14
    • 3042525106 scopus 로고    scopus 로고
    • Learning to detect natural image boundaries using local brightness, color and texture cues
    • 1050, 1052
    • D. Martin, C. Fowlkes, and J. Malik. Learning to detect natural image boundaries using local brightness, color and texture cues. IEEE Trans. PAMI, 26(5):530-549, 2004. 1050, 1052
    • (2004) IEEE Trans. PAMI , vol.26 , Issue.5 , pp. 530-549
    • Martin, D.1    Fowlkes, C.2    Malik, J.3
  • 15
    • 2942577813 scopus 로고    scopus 로고
    • Surface normal overlap: A computer-aided detection algorithm with application to colonic polyps and lung nodules in helical ct
    • page, 1049, 1050, 1051
    • D. Paik and et al. Surface normal overlap: a computer-aided detection algorithm with application to colonic polyps and lung nodules in helical ct. IEEE Trans. Med. Imag., page 23(6):661675, 2004. 1049, 1050, 1051
    • (2004) IEEE Trans. Med. Imag. , vol.23 , Issue.6 , pp. 661675
    • Paik, D.1
  • 16
    • 56449092895 scopus 로고    scopus 로고
    • Bayesian multiple instance learning: Automatic feature selection and inductive transfer
    • 1054, 1055
    • V. Raykar, B. Krishnapuram, J. Bi, M. Dundar, and R. Rao. Bayesian multiple instance learning: automatic feature selection and inductive transfer. In ICML, pages 808-815, 2008. 1054, 1055
    • (2008) ICML , pp. 808-815
    • Raykar, V.1    Krishnapuram, B.2    Bi, J.3    Dundar, M.4    Rao, R.5
  • 17
    • 85162057713 scopus 로고    scopus 로고
    • On ranking in survival analysis: Bounds on the concordance index
    • 1054
    • V. Raykar, H. Steck, B. Krishnapuram, C. Dehing-Oberije, and P. Lambin. On ranking in survival analysis: Bounds on the concordance index. In NIPS, pages 1209-1216, 2007. 1054
    • (2007) NIPS , pp. 1209-1216
    • Raykar, V.1    Steck, H.2    Krishnapuram, B.3    Dehing-Oberije, C.4    Lambin, P.5
  • 18
    • 77955991434 scopus 로고    scopus 로고
    • Figure-ground segmentation improves handled object recognition in egocentric video
    • 1049
    • X. Ren and C. Gu. Figure-ground segmentation improves handled object recognition in egocentric video. In Proc. IEEE CVPR, pages 886-893, 2010. 1049
    • (2010) Proc. IEEE CVPR , pp. 886-893
    • Ren, X.1    Gu, C.2
  • 19
    • 0345414167 scopus 로고    scopus 로고
    • Learning a classification model for segmentation
    • 1050, 1052
    • X. Ren and J. Malik. Learning a classification model for segmentation. In Proc. IEEE ICCV, pages 10-17, 2003. 1050, 1052
    • (2003) Proc. IEEE ICCV , pp. 10-17
    • Ren, X.1    Malik, J.2
  • 20
    • 58149151266 scopus 로고    scopus 로고
    • Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling appearance, shape and context
    • 1049
    • J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling appearance, shape and context. Int. J. Comp. Vis., 2009. 1049
    • (2009) Int. J. Comp. Vis.
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 21
    • 77956123760 scopus 로고    scopus 로고
    • A robust and fast system for ctc computer-aided detection of colorectal lesions
    • 1054, 1055
    • G. Slabaugh, X. Yang, X. Ye, R. Boyes, and G. Beddoe. A robust and fast system for ctc computer-aided detection of colorectal lesions. Algorithms, 3(1):21-43, 2010. 1054, 1055
    • (2010) Algorithms , vol.3 , Issue.1 , pp. 21-43
    • Slabaugh, G.1    Yang, X.2    Ye, X.3    Boyes, R.4    Beddoe, G.5
  • 22
    • 77952272086 scopus 로고    scopus 로고
    • Multi-level ground glass opacity detection and segmentation in ct lung images
    • 1049, 1050, 1051, 1052
    • Y. Tao, L. Lu, M. Dewan, and et al. Multi-level ground glass opacity detection and segmentation in ct lung images. In Proc. MICCAI, pages 715-723, 2009. 1049, 1050, 1051, 1052
    • (2009) Proc. MICCAI , pp. 715-723
    • Tao, Y.1    Lu, L.2    Dewan, M.3
  • 23
    • 33845572535 scopus 로고    scopus 로고
    • Probabilistic 3d polyp detection in ct images: The role of sample alignment
    • 1052
    • Z. Tu, X. Zhou, L. Bogoni, A. Barbu, and D. Comaniciu. Probabilistic 3d polyp detection in ct images: The role of sample alignment. In CVPR, pages 1544-1551, 2006. 1052
    • (2006) CVPR , pp. 1544-1551
    • Tu, Z.1    Zhou, X.2    Bogoni, L.3    Barbu, A.4    Comaniciu, D.5
  • 25
    • 37549032039 scopus 로고    scopus 로고
    • Supervised enhancement filters: Application to fissure detection in chest ct scans
    • 1050, 1052
    • E. M. van Rikxoort, B. van Ginneken, M. Klik, and M. Prokop. Supervised enhancement filters: Application to fissure detection in chest ct scans. IEEE Trans. Med. Imag., 27:1-10, 2008. 1050, 1052
    • (2008) IEEE Trans. Med. Imag. , vol.27 , pp. 1-10
    • Van Rikxoort, E.M.1    Van Ginneken, B.2    Klik, M.3    Prokop, M.4
  • 26
    • 5044232899 scopus 로고    scopus 로고
    • Learning a rare event detection cascade by direct feature selection
    • 1051, 1054
    • J. Wu, J. Rehg, and M. Mullin. Learning a rare event detection cascade by direct feature selection. In NIPS, 2003. 1051, 1054
    • (2003) NIPS
    • Wu, J.1    Rehg, J.2    Mullin, M.3
  • 27
    • 33645675961 scopus 로고    scopus 로고
    • Mdct-based 3-d texture classification of emphysema and early smoking related lung pathologies
    • 1049, 1050
    • Y. Xu, M. Sonka, and et al. Mdct-based 3-d texture classification of emphysema and early smoking related lung pathologies. IEEE Trans. Med. Imag., 25:464-475, 2006. 1049, 1050
    • (2006) IEEE Trans. Med. Imag. , vol.25 , pp. 464-475
    • Xu, Y.1    Sonka, M.2
  • 28
    • 59149100916 scopus 로고    scopus 로고
    • Employing topographical height map in colonic polyp measurement and false positive reduction
    • 1052
    • J. Yao, J. Li, and R. Summers:. Employing topographical height map in colonic polyp measurement and false positive reduction. Pattern Recognition, 42(6):1029-1040, 2009. 1052
    • (2009) Pattern Recognition , vol.42 , Issue.6 , pp. 1029-1040
    • Yao, J.1    Li, J.2    Summers, R.3
  • 29
    • 9244257291 scopus 로고    scopus 로고
    • Colonic polyp segmentation in ct colongraphy-based on fuzzy clustering and deformable models
    • 1049, 1050, 1051
    • J. Yao, M. Miller, M. Franaszek, and R. Summers. Colonic polyp segmentation in ct colongraphy-based on fuzzy clustering and deformable models. IEEE Trans on Medical Imaging, 23(11):1344-1352, 2004. 1049, 1050, 1051
    • (2004) IEEE Trans on Medical Imaging , vol.23 , Issue.11 , pp. 1344-1352
    • Yao, J.1    Miller, M.2    Franaszek, M.3    Summers, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.