메뉴 건너뛰기




Volumn , Issue , 2005, Pages 811-818

Efficient unsupervised learning for localization and detection in object categories

Author keywords

[No Author keywords available]

Indexed keywords

COMPARATIVE METHODS; DATA SETS; DETECTION AND LOCALIZATION; GENERATIVE MODEL; IMAGE FEATURES; MULTIPLE OBJECTS; OBJECT CATEGORIES; OBJECT COORDINATE SYSTEMS; ORDERS OF MAGNITUDE; TEMPLATE MODELS; VARIATIONAL APPROXIMATION;

EID: 84860624328     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (16)

References (16)
  • 1
    • 0035680116 scopus 로고    scopus 로고
    • Rapid object detection using a boosted cascade of simple features
    • P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. Proc. of CVPR, pages 511-518, 2001.
    • (2001) Proc. of CVPR , pp. 511-518
    • Viola, P.1    Jones, M.2
  • 3
    • 33745172422 scopus 로고    scopus 로고
    • Object class recognition using discriminative local features
    • Submitted to
    • G. Dorko and C. Schmid. Object class recognition using discriminative local features. Submitted to IEEE trans. on PAMI, 2004.
    • (2004) IEEE Trans. on PAMI
    • Dorko, G.1    Schmid, C.2
  • 4
    • 84944248013 scopus 로고    scopus 로고
    • Unsupervised learning of models for recognition
    • M.Weber,M.Welling, and P. Perona. Unsupervised Learning of Models for Recognition. Proc. of ECCV (1), pages 18-32, 2000.
    • (2000) Proc. of ECCV , Issue.1 , pp. 18-32
    • Weber, M.1    Welling, M.2    Perona, P.3
  • 5
    • 0041940256 scopus 로고    scopus 로고
    • Object class recognition by unsupervised scale- invariant learning
    • R. Fergus, P. Perona, and A. Zisserman. Object Class Recognition by Unsupervised Scale- Invariant Learning. Proc. of CVPR, pages 264-271, 2003.
    • (2003) Proc. of CVPR , pp. 264-271
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 6
    • 0043005300 scopus 로고    scopus 로고
    • Learning a sparse representation for object detection
    • Copenhagen, Denmark, May
    • S. Agarwal and D. Roth. Learning a sparse representation for object detection. In Proc. of ECCV, volume 4, pages 113-130, Copenhagen, Denmark, May 2002.
    • (2002) Proc. of ECCV , vol.4 , pp. 113-130
    • Agarwal, S.1    Roth, D.2
  • 7
  • 8
    • 33745896230 scopus 로고    scopus 로고
    • Efficient learning of relational object class models
    • October
    • A. B. Hillel, T. Hertz, and D. Weinshall. Efficient learning of relational object class models. In Proc. of ICCV, pages 1762-1769, October 2005.
    • (2005) Proc. of ICCV , pp. 1762-1769
    • Hillel, A.B.1    Hertz, T.2    Weinshall, D.3
  • 9
    • 24644483228 scopus 로고    scopus 로고
    • A sparse object category model for efficient learning and exhaustive recognition
    • june
    • R. Fergus, P. Perona, and A. Zisserman. A sparse object category model for efficient learning and exhaustive recognition. In Proc. of CVPR, pages 380-387, june 2005.
    • (2005) Proc. of CVPR , pp. 380-387
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 10
    • 24644514946 scopus 로고    scopus 로고
    • Spatial priors for part-based recognition using statistical models
    • D. Crandall, P. Felzenszwalb, and D. Huttenlocher. Spatial Priors for Part-Based Recognition using Statistical Models. In Proc. of CVPR, pages 10-17, 2005.
    • (2005) Proc. of CVPR , pp. 10-17
    • Crandall, D.1    Felzenszwalb, P.2    Huttenlocher, D.3
  • 11
    • 34247612704 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples an incremental bayesian approach tested on 101 object categories
    • Washington, DC, June
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples an incremental bayesian approach tested on 101 object categories. In Workshop on Generative-Model Based Vision, Washington, DC, June 2004.
    • (2004) Workshop on Generative-Model Based Vision
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 12
    • 33645985275 scopus 로고    scopus 로고
    • Generic object recognition with boosting
    • Technical Report TR-EMT-2004-01, EMT, TU Graz, Austria, Submitted to the
    • A. Opelt, M. Fussenegger, A. Pinz, and P. Auer. Generic object recognition with boosting. Technical Report TR-EMT-2004-01, EMT, TU Graz, Austria, 2004. Submitted to the IEEE Trans. on PAMI.
    • (2004) IEEE Trans. on PAMI
    • Opelt, A.1    Fussenegger, M.2    Pinz, A.3    Auer, P.4
  • 13
    • 0035507681 scopus 로고    scopus 로고
    • Saliency, scale and image description
    • T. Kadir and M. Brady. Saliency, Scale and Image Description. IJCV, 45(2):83-105, 2001.
    • (2001) IJCV , vol.45 , Issue.2 , pp. 83-105
    • Kadir, T.1    Brady, M.2
  • 14
    • 25844482570 scopus 로고    scopus 로고
    • A comparison of algorithms for inference and learning in probabilistic graphical models
    • B. Frey and N. Jojic. A Comparison of Algorithms for Inference and Learning in Probabilistic Graphical Models. IEEE Trans. on PAMI, 27(9):1392-1416, 2005.
    • (2005) IEEE Trans. on PAMI , vol.27 , Issue.9 , pp. 1392-1416
    • Frey, B.1    Jojic, N.2
  • 15
    • 0002788893 scopus 로고    scopus 로고
    • A view of the em algorithm that justifies incremental, sparse, and other variants
    • M. I. Jordan, editor, MIT Press, Cambridge, MA, USA
    • R. Neal and G. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other variants. In M. I. Jordan, editor, Learning in graphical models, pages 355-368. MIT Press, Cambridge, MA, USA, 1999.
    • (1999) Learning in Graphical Models , pp. 355-368
    • Neal, R.1    Hinton, G.2
  • 16
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91-110, 2004.
    • (2004) IJCV , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.