메뉴 건너뛰기




Volumn 9, Issue 2, 2014, Pages

Stability indicators in network reconstruction

Author keywords

[No Author keywords available]

Indexed keywords

MICRORNA;

EID: 84896121642     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0089815     Document Type: Article
Times cited : (19)

References (77)
  • 2
    • 84874869435 scopus 로고    scopus 로고
    • An Overview of the Statistical Methods Used for Inferring Gene Regulatory Networks and Protein-Protein Interaction Networks
    • Noor A, Serpedin E, Nounou M, Nounou H, Mohamed N, et al. (2013) An Overview of the Statistical Methods Used for Inferring Gene Regulatory Networks and Protein-Protein Interaction Networks. Advances in Bioinformatics 2013: Article ID 953814 - 12 pages.
    • (2013) Advances in Bioinformatics , vol.2013 , pp. 953814-953912
    • Noor, A.1    Serpedin, E.2    Nounou, M.3    Nounou, H.4    Mohamed, N.5
  • 4
    • 0034710924 scopus 로고    scopus 로고
    • Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks
    • Butte A, Tamayo P, Slonim D, Golub T, Kohane I (2000) Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proceedings of the National Academy of Science 97: 12182-12186.
    • (2000) Proceedings of the National Academy of Science , vol.97 , pp. 12182-12186
    • Butte, A.1    Tamayo, P.2    Slonim, D.3    Golub, T.4    Kohane, I.5
  • 5
    • 84874647439 scopus 로고    scopus 로고
    • A novel Bayesian network inference algorithm for integrative analysis of heterogeneous deep sequencing data
    • Liu Y, Qiao N, Zhu S, Su M, Sun N, et al. (2013) A novel Bayesian network inference algorithm for integrative analysis of heterogeneous deep sequencing data. Cell Research 23: 440-443.
    • (2013) Cell Research , vol.23 , pp. 440-443
    • Liu, Y.1    Qiao, N.2    Zhu, S.3    Su, M.4    Sun, N.5
  • 6
    • 84878484640 scopus 로고    scopus 로고
    • Inference of Gene Regulatory Networks with Sparse Structural Equation Models Exploiting Genetic Perturbations
    • Cai X, Bazerque J, Giannakis G (2013) Inference of Gene Regulatory Networks with Sparse Structural Equation Models Exploiting Genetic Perturbations. PLoS Computational Biology 9: e1003068.
    • (2013) PLoS Computational Biology , vol.9
    • Cai, X.1    Bazerque, J.2    Giannakis, G.3
  • 7
    • 77957110013 scopus 로고    scopus 로고
    • Advantages and limitations of current network inference methods
    • De Smet R, Marchal K (2010) Advantages and limitations of current network inference methods. Nature Reviews Microbiology 8: 717-729.
    • (2010) Nature Reviews Microbiology , vol.8 , pp. 717-729
    • De Smet, R.1    Marchal, K.2
  • 8
    • 84864420140 scopus 로고    scopus 로고
    • Intscore: A web tool for confidence scoring of biological interactions
    • Kamburov A, Stelzl U, Herwig R (2012) Intscore: a web tool for confidence scoring of biological interactions. Nucleic Acids Research 40: W140-W146.
    • (2012) Nucleic Acids Research , vol.40
    • Kamburov, A.1    Stelzl, U.2    Herwig, R.3
  • 9
    • 84883771767 scopus 로고    scopus 로고
    • Network deconvolution as a general method to distinguish direct dependencies in networks
    • Feizi S, Marbach D, Médard M, Kellis M (2013) Network deconvolution as a general method to distinguish direct dependencies in networks. Nature Biotechnology 31: 726-733.
    • (2013) Nature Biotechnology , vol.31 , pp. 726-733
    • Feizi, S.1    Marbach, D.2    Médard, M.3    Kellis, M.4
  • 10
    • 84880358132 scopus 로고    scopus 로고
    • Identifiability and inference of pathway motifs by epistasis analysis
    • Phenix H, Perkins T, Kærn M (2013) Identifiability and inference of pathway motifs by epistasis analysis. Chaos 23: 025103.
    • (2013) Chaos , vol.23 , pp. 025103
    • Phenix, H.1    Perkins, T.2    Kærn, M.3
  • 12
    • 80052730617 scopus 로고    scopus 로고
    • Verification of systems biology research in the age of collaborative competition
    • Meyer P, Alexopoulos L, Bonk T, Califano A, Cho C, et al. (2011) Verification of systems biology research in the age of collaborative competition. Nature Biotechnology 29: 811-815.
    • (2011) Nature Biotechnology , vol.29 , pp. 811-815
    • Meyer, P.1    Alexopoulos, L.2    Bonk, T.3    Califano, A.4    Cho, C.5
  • 13
    • 70449529712 scopus 로고    scopus 로고
    • Reverse engineering and verification of gene networks: Principles, assumptions, and limitations of present methods and future perspectives
    • He F, Balling R, Zeng AP (2009) Reverse engineering and verification of gene networks: Principles, assumptions, and limitations of present methods and future perspectives. Journal of Biotechnology 144: 190-203.
    • (2009) Journal of Biotechnology , vol.144 , pp. 190-203
    • He, F.1    Balling, R.2    Zeng, A.P.3
  • 14
    • 77949644952 scopus 로고    scopus 로고
    • Towards a Rigorous Assessment of Systems Biology Models: The DREAM3 Challenges
    • Prill R, Marbach D, Saez-Rodriguez J, Sorger P, Alexopoulos L, et al. (2010) Towards a Rigorous Assessment of Systems Biology Models: The DREAM3 Challenges. PLoS ONE 5: e9202.
    • (2010) PLoS ONE , vol.5
    • Prill, R.1    Marbach, D.2    Saez-Rodriguez, J.3    Sorger, P.4    Alexopoulos, L.5
  • 15
    • 78651228162 scopus 로고    scopus 로고
    • Gene Expression Network Reconstruction by Convex Feature Selection when Incorporating Genetic Perturbations
    • Logsdon B, Mezey J (2010) Gene Expression Network Reconstruction by Convex Feature Selection when Incorporating Genetic Perturbations. PLoS Computational Biology 6: e1001014.
    • (2010) PLoS Computational Biology , vol.6
    • Logsdon, B.1    Mezey, J.2
  • 16
    • 79959404103 scopus 로고    scopus 로고
    • The role of indirect connections in gene networks in predicting function
    • Gillis J, Pavlidis P (2011) The role of indirect connections in gene networks in predicting function. Bioinformatics 27: 1860-1866.
    • (2011) Bioinformatics , vol.27 , pp. 1860-1866
    • Gillis, J.1    Pavlidis, P.2
  • 17
    • 84862499505 scopus 로고    scopus 로고
    • Identifying Biological Network Structure, Predicting Network Behavior, and Classifying Network State With High Dimensional Model Representation (HDMR)
    • Miller M, Feng XJ, Li G, Rabitz H (2012) Identifying Biological Network Structure, Predicting Network Behavior, and Classifying Network State With High Dimensional Model Representation (HDMR). PLoS ONE 7: e37664.
    • (2012) PLoS ONE , vol.7
    • Miller, M.1    Feng, X.J.2    Li, G.3    Rabitz, H.4
  • 18
    • 84859863444 scopus 로고    scopus 로고
    • Empirically determining the sample size for large-scale gene network inference algorithms
    • Altay G (2012) Empirically determining the sample size for large-scale gene network inference algorithms. IET Systems Biology 6: 35-43.
    • (2012) IET Systems Biology , vol.6 , pp. 35-43
    • Altay, G.1
  • 19
    • 84855997910 scopus 로고    scopus 로고
    • Inference of complex biological networks: Distinguishability issues and optimization-based solutions
    • Szederkenyi G, Banga J, Alonso A (2011) Inference of complex biological networks: distinguishability issues and optimization-based solutions. BMC Systems Biology 5: 177.
    • (2011) BMC Systems Biology , vol.5 , pp. 177
    • Szederkenyi, G.1    Banga, J.2    Alonso, A.3
  • 20
    • 77954484005 scopus 로고    scopus 로고
    • Revealing differences in gene network inference algorithms on the network level by ensemble methods
    • Altay G, Emmert-Streib F (2010) Revealing differences in gene network inference algorithms on the network level by ensemble methods. Bioinformatics 26: 1738-1744.
    • (2010) Bioinformatics , vol.26 , pp. 1738-1744
    • Altay, G.1    Emmert-Streib, F.2
  • 21
    • 38349055557 scopus 로고    scopus 로고
    • Indeterminacy of Reverse Engineering of Gene Regulatory Networks: The Curse of Gene Elasticity
    • Krishnan A, Giuliani A, Tomita M (2007) Indeterminacy of Reverse Engineering of Gene Regulatory Networks: The Curse of Gene Elasticity. PLoS ONE 2: e562.
    • (2007) PLoS ONE , vol.2
    • Krishnan, A.1    Giuliani, A.2    Tomita, M.3
  • 22
    • 84860280305 scopus 로고    scopus 로고
    • Gene regulatory network inference: Evaluation and application to ovarian cancer allows the prioritization of drug targets
    • Madhamshettiwar P, Maetschke S, Davis M, Reverter A, Ragan M (2012) Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets. Genome Medicine 4: 41.
    • (2012) Genome Medicine , vol.4 , pp. 41
    • Madhamshettiwar, P.1    Maetschke, S.2    Davis, M.3    Reverter, A.4    Ragan, M.5
  • 27
    • 84896135343 scopus 로고    scopus 로고
    • A Machine Learning Pipeline for Discriminant Pathways Identification
    • Kasabov N, editor, Berlin: Springer Verlag, chapter 53
    • Barla A, Jurman G, Visintainer R, Squillario M, Filosi M, et al. (2013) A Machine Learning Pipeline for Discriminant Pathways Identification. In: Kasabov N, editor, Springer Handbook of Bio-/Neuroinformatics, Berlin: Springer Verlag, chapter 53. p. 1200.
    • (2013) Springer Handbook of Bio-/Neuroinformatics , pp. 1200
    • Barla, A.1    Jurman, G.2    Visintainer, R.3    Squillario, M.4    Filosi, M.5
  • 28
    • 33947305781 scopus 로고    scopus 로고
    • ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
    • Margolin A, Nemenman I, Basso K, Wiggins C, Stolovitzky G, et al. (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7: S7.
    • (2006) BMC Bioinformatics , vol.7
    • Margolin, A.1    Nemenman, I.2    Basso, K.3    Wiggins, C.4    Stolovitzky, G.5
  • 29
    • 33846400424 scopus 로고    scopus 로고
    • Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles
    • Faith J, Hayete B, Thaden J, Mogno I, Wierzbowski J, et al. (2007) Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles. PLoS Biology 5: e8.
    • (2007) PLoS Biology , vol.5
    • Faith, J.1    Hayete, B.2    Thaden, J.3    Mogno, I.4    Wierzbowski, J.5
  • 32
    • 70349871321 scopus 로고    scopus 로고
    • MicroRNA Expression, Survival, and Response to Interferon in Liver Cancer
    • Ji J, Shi J, Budhu A, Yu Z, Forgues M, et al. (2009) MicroRNA Expression, Survival, and Response to Interferon in Liver Cancer. New England Journal of Medicine 361: 1437-1447.
    • (2009) New England Journal of Medicine , vol.361 , pp. 1437-1447
    • Ji, J.1    Shi, J.2    Budhu, A.3    Yu, Z.4    Forgues, M.5
  • 34
    • 32144438837 scopus 로고    scopus 로고
    • Metabolic pathways variability and sequence/ networks comparisons
    • Tun K, Dhar P, Palumbo M, Giuliani A (2006) Metabolic pathways variability and sequence/ networks comparisons. BMC Bioinformatics 7: 24.
    • (2006) BMC Bioinformatics , vol.7 , pp. 24
    • Tun, K.1    Dhar, P.2    Palumbo, M.3    Giuliani, A.4
  • 35
    • 79955765957 scopus 로고    scopus 로고
    • Validation of gene regulatory networks: Scientific and inferential
    • Dougherty E (2010) Validation of gene regulatory networks: scientific and inferential. Briefings in Bioinformatics 12: 245-252.
    • (2010) Briefings in Bioinformatics , vol.12 , pp. 245-252
    • Dougherty, E.1
  • 36
    • 41349099571 scopus 로고    scopus 로고
    • Evolutionary reconstruction of networks
    • Ipsen M, Mikhailov A (2002) Evolutionary reconstruction of networks. Physical Review E 66: 046109.
    • (2002) Physical Review e , vol.66 , pp. 046109
    • Ipsen, M.1    Mikhailov, A.2
  • 41
    • 70349533092 scopus 로고    scopus 로고
    • Perturbation Analysis of Complete Synchronization in Networks of Phase Oscillators
    • Tönjes R, Blasius B (2009) Perturbation Analysis of Complete Synchronization in Networks of Phase Oscillators. Physical Review E 80: 026202.
    • (2009) Physical Review e , vol.80 , pp. 026202
    • Tönjes, R.1    Blasius, B.2
  • 42
    • 33750991862 scopus 로고    scopus 로고
    • Network synchronization: Spectral versus statistical properties
    • DOI 10.1016/j.physd.2006.09.018, PII S0167278906003794
    • Atay F, Biyikoǧlu T, Jost J (2006) Network synchronization: Spectral versus statistical properties. Physica D Nonlinear Phenomena 224: 35-41. (Pubitemid 44751216)
    • (2006) Physica D: Nonlinear Phenomena , vol.224 , Issue.1-2 , pp. 35-41
    • Atay, F.M.1    Biyikoglu, T.2    Jost, J.3
  • 43
    • 60549111634 scopus 로고    scopus 로고
    • WGCNA: An R package for weighted correlation network analysis
    • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9: 559.
    • (2008) BMC Bioinformatics , vol.9 , pp. 559
    • Langfelder, P.1    Horvath, S.2
  • 44
    • 84870527707 scopus 로고    scopus 로고
    • Comparison of co-expression measures: Mutual information, correlation, and model based indices
    • Song L, Langfelder P, Horvath S (2012) Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinformatics 13: 328.
    • (2012) BMC Bioinformatics , vol.13 , pp. 328
    • Song, L.1    Langfelder, P.2    Horvath, S.3
  • 46
    • 83755172059 scopus 로고    scopus 로고
    • A Correlation for the 21st Century
    • Speed T (2011) A Correlation for the 21st Century. Science 6062: 1502-1503.
    • (2011) Science , vol.6062 , pp. 1502-1503
    • Speed, T.1
  • 47
    • 84859639276 scopus 로고    scopus 로고
    • Finding correlations in big data
    • Nature Biotechnology (2012) Finding correlations in big data. Nature Biotechnology 30: 334-335.
    • (2012) Nature Biotechnology , vol.30 , pp. 334-335
    • Biotechnology, N.1
  • 48
    • 84873295571 scopus 로고    scopus 로고
    • minerva and minepy: A C engine for the MINE suite and its R, Python and MATLAB wrappers
    • Albanese D, Filosi M, Visintainer R, Riccadonna S, Jurman G, et al. (2013) minerva and minepy: a C engine for the MINE suite and its R, Python and MATLAB wrappers. Bioinformatics 29: 407-408.
    • (2013) Bioinformatics , vol.29 , pp. 407-408
    • Albanese, D.1    Filosi, M.2    Visintainer, R.3    Riccadonna, S.4    Jurman, G.5
  • 50
    • 79961200389 scopus 로고    scopus 로고
    • GeneNetWeaver: In silico benchmark generation and performance profiling of network inference methods
    • Schaffter T, Marbach D, Floreano D (2011) GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics 27: 2263-2270.
    • (2011) Bioinformatics , vol.27 , pp. 2263-2270
    • Schaffter, T.1    Marbach, D.2    Floreano, D.3
  • 51
    • 80054120656 scopus 로고    scopus 로고
    • DART: Denoising Algorithm based on Relevance network Topology improves molecular pathway activity inference
    • Jiao Y, Lawler K, Patel G, Purushotham A, Jones A, et al. (2011) DART: Denoising Algorithm based on Relevance network Topology improves molecular pathway activity inference. BMC Bioinformatics 12: 403.
    • (2011) BMC Bioinformatics , vol.12 , pp. 403
    • Jiao, Y.1    Lawler, K.2    Patel, G.3    Purushotham, A.4    Jones, A.5
  • 52
    • 84855846735 scopus 로고    scopus 로고
    • Comparing Statistical Methods for Constructing Large Scale Gene Networks
    • Allen J, Xie Y, Chen M, Girard L, Xiao G (2012) Comparing Statistical Methods for Constructing Large Scale Gene Networks. PLoS ONE 7: e29348.
    • (2012) PLoS ONE , vol.7
    • Allen, J.1    Xie, Y.2    Chen, M.3    Girard, L.4    Xiao, G.5
  • 55
    • 79951648906 scopus 로고    scopus 로고
    • Emerging roles of microRNA in the intracellular signaling networks of hepatocellular carcinoma
    • Law PTY, Wong N (2011) Emerging roles of microRNA in the intracellular signaling networks of hepatocellular carcinoma. Journal of Gastroenterology and Hepatology 26: 437-449.
    • (2011) Journal of Gastroenterology and Hepatology , vol.26 , pp. 437-449
    • Law, P.T.Y.1    Wong, N.2
  • 56
    • 84862179632 scopus 로고    scopus 로고
    • Gene regulation is governed by a core network in hepatocellular carcinoma
    • Gu Z, Zhang C, Wang J (2012) Gene regulation is governed by a core network in hepatocellular carcinoma. BMC Systems Biology 6: 32.
    • (2012) BMC Systems Biology , vol.6 , pp. 32
    • Gu, Z.1    Zhang, C.2    Wang, J.3
  • 58
    • 84883476367 scopus 로고    scopus 로고
    • Clinical significance and prognostic value of microRNA expression signatures in hepatocellular carcinoma
    • Wei RR, Huang GL, Zhang MY, Li BK, Zhang HZ, et al. (2013) Clinical significance and prognostic value of microRNA expression signatures in hepatocellular carcinoma. Clinical Cancer Research 19: 4780-4791.
    • (2013) Clinical Cancer Research , vol.19 , pp. 4780-4791
    • Wei, R.R.1    Huang, G.L.2    Zhang, M.Y.3    Li, B.K.4    Zhang, H.Z.5
  • 60
    • 41749113108 scopus 로고    scopus 로고
    • MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer
    • DOI 10.1038/sj.onc.1210856, PII 1210856
    • Asangani I, Rasheed S, Nikolova D, Leupold J, Colburn N, et al. (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27: 2128-2136. (Pubitemid 351485639)
    • (2008) Oncogene , vol.27 , Issue.15 , pp. 2128-2136
    • Asangani, I.A.1    Rasheed, S.A.K.2    Nikolova, D.A.3    Leupold, J.H.4    Colburn, N.H.5    Post, S.6    Allgayer, H.7
  • 61
    • 84860213619 scopus 로고    scopus 로고
    • Gender-Specific Reduction of Estrogen-Sensitive Small RNA, miR-30b, in Subjects With Schizophrenia
    • Mellios N, Galdzicka M, Ginns E, Baker S, Rogaev E, et al. (2012) Gender-Specific Reduction of Estrogen-Sensitive Small RNA, miR-30b, in Subjects With Schizophrenia. Schizophrenia Bulletin 38: 433-443.
    • (2012) Schizophrenia Bulletin , vol.38 , pp. 433-443
    • Mellios, N.1    Galdzicka, M.2    Ginns, E.3    Baker, S.4    Rogaev, E.5
  • 63
    • 84872050193 scopus 로고    scopus 로고
    • Interactions of miR-323/miR-326/miR-329 and miR-130a/miR-155/miR-210 as prognostic indicators for clinical outcome of glioblastoma patients
    • Qiu S, Lin S, Hu D, Feng Y, Tan Y, et al. (2013) Interactions of miR-323/miR-326/miR-329 and miR-130a/miR-155/miR-210 as prognostic indicators for clinical outcome of glioblastoma patients. Journal of Translational Medicine 11:10.
    • (2013) Journal of Translational Medicine , vol.11 , pp. 10
    • Qiu, S.1    Lin, S.2    Hu, D.3    Feng, Y.4    Tan, Y.5
  • 64
    • 72849108572 scopus 로고    scopus 로고
    • The Neuronal MicroRNA miR-326 Acts in a Feedback Loop with Notch and Has Therapeutic Potential against Brain Tumors
    • Kefas B, Comeau L, Floyd D, Seleverstov O, Godlewski J, et al. (2009) The Neuronal MicroRNA miR-326 Acts in a Feedback Loop with Notch and Has Therapeutic Potential against Brain Tumors. The Journal of Neuroscience 29: 15161-15168.
    • (2009) The Journal of Neuroscience , vol.29 , pp. 15161-15168
    • Kefas, B.1    Comeau, L.2    Floyd, D.3    Seleverstov, O.4    Godlewski, J.5
  • 65
    • 42249089850 scopus 로고    scopus 로고
    • MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma
    • DOI 10.1002/hep.22158
    • Varnholt H, Drebber U, Schulze F, Wedemeyer I, Schirmacher P, et al. (2008) MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology 47: 1223-1232. (Pubitemid 351547908)
    • (2008) Hepatology , vol.47 , Issue.4 , pp. 1223-1232
    • Varnholt, H.1    Drebber, U.2    Schulze, F.3    Wedemeyer, I.4    Schirmacher, P.5    Dienes, H.-P.6    Odenthal, M.7
  • 66
    • 84902241151 scopus 로고    scopus 로고
    • microRNA: A Promising Diagnostic Biomarker and Therapeutic Target for Hepatocellular Carcinoma
    • January 2014
    • Li X, Yang W, Lou L, Chen Y, Wu S, et al. (2014) microRNA: A Promising Diagnostic Biomarker and Therapeutic Target for Hepatocellular Carcinoma. Digestive Diseases and Sciences January 2014: 1-9.
    • (2014) Digestive Diseases and Sciences , pp. 1-9
    • Li, X.1    Yang, W.2    Lou, L.3    Chen, Y.4    Wu, S.5
  • 67
    • 57749099102 scopus 로고    scopus 로고
    • p53-Responsive MicroRNAs 192 and 215 Are Capable of Inducing Cell Cycle Arrest
    • Braun C, Zhang X, Savelyeva I, Wolff S, Moll U, et al. (2008) p53-Responsive MicroRNAs 192 and 215 Are Capable of Inducing Cell Cycle Arrest. Cancer Research 68: 10094-10104.
    • (2008) Cancer Research , vol.68 , pp. 10094-10104
    • Braun, C.1    Zhang, X.2    Savelyeva, I.3    Wolff, S.4    Moll, U.5
  • 68
    • 57749116172 scopus 로고    scopus 로고
    • Coordinated Regulation of Cell Cycle Transcripts by p53-Inducible microRNAs, miR-192 and miR-215
    • Georges S, Biery M, Kim S, Schelter J, Guo J, et al. (2008) Coordinated Regulation of Cell Cycle Transcripts by p53-Inducible microRNAs, miR-192 and miR-215. Cancer Research 68: 10105-10112.
    • (2008) Cancer Research , vol.68 , pp. 10105-10112
    • Georges, S.1    Biery, M.2    Kim, S.3    Schelter, J.4    Guo, J.5
  • 69
    • 77957936826 scopus 로고    scopus 로고
    • Downregulation of p53-inducible microRNAs 192, 194, and 215 Impairs the p53/MDM2 Autoregulatory Loop in Multiple Myeloma Development
    • Pichiorri F, Suh SS, Rocci A, Luca LD, Taccioli C, et al. (2010) Downregulation of p53-inducible microRNAs 192, 194, and 215 Impairs the p53/MDM2 Autoregulatory Loop in Multiple Myeloma Development. Cancer Cell 18: 367-381.
    • (2010) Cancer Cell , vol.18 , pp. 367-381
    • Pichiorri, F.1    Suh, S.S.2    Rocci, A.3    Luca, L.D.4    Taccioli, C.5
  • 71
    • 78651293534 scopus 로고    scopus 로고
    • miRBase: Integrating microRNA annotation and deepsequencing data
    • Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deepsequencing data. Nucleic Acids Research 39: D152-D157.
    • (2011) Nucleic Acids Research , vol.39
    • Kozomara, A.1    Griffiths-Jones, S.2
  • 74
    • 62349130698 scopus 로고    scopus 로고
    • Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
    • Langmead B, Trapnell C, Pop M, Salzberg S (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology 10: R25.
    • (2009) Genome Biology , vol.10
    • Langmead, B.1    Trapnell, C.2    Pop, M.3    Salzberg, S.4
  • 75
    • 33646157967 scopus 로고    scopus 로고
    • Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues
    • Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, et al. (2005) Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 25: 2537-2545.
    • (2005) Oncogene , vol.25 , pp. 2537-2545
    • Murakami, Y.1    Yasuda, T.2    Saigo, K.3    Urashima, T.4    Toyoda, H.5
  • 76
    • 51349165812 scopus 로고    scopus 로고
    • Elevated expression of the mir-17-92 polycistron and mir-21 in hepadnavirus-associated hepatocellular carcinoma contributes to the malignant phenotype
    • Connolly E, Melegari M, Landgraf P, Tchaikovskaya T, Tennant BC, et al. (2008) Elevated expression of the mir-17-92 polycistron and mir-21 in hepadnavirus-associated hepatocellular carcinoma contributes to the malignant phenotype. The American Journal of Pathology 173: 856-864.
    • (2008) The American Journal of Pathology , vol.173 , pp. 856-864
    • Connolly, E.1    Melegari, M.2    Landgraf, P.3    Tchaikovskaya, T.4    Tennant, B.C.5
  • 77
    • 77349120755 scopus 로고    scopus 로고
    • PhenomiR: A knowledgebase for microRNA expression in diseases and biological processes
    • Ruepp A, Kowarsch A, Schmidl D, Buggenthin F, Brauner B, et al. (2010) PhenomiR: a knowledgebase for microRNA expression in diseases and biological processes. Genome Biology 11: R6.
    • (2010) Genome Biology , vol.11
    • Ruepp, A.1    Kowarsch, A.2    Schmidl, D.3    Buggenthin, F.4    Brauner, B.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.