메뉴 건너뛰기




Volumn 9, Issue 2, 2014, Pages

Bayesian model comparison and parameter inference in systems biology using nested sampling

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BAYES THEOREM; BIOENGINEERING; BIOINFORMATICS; DYNAMICS; MATHEMATICAL MODEL; MONTE CARLO METHOD; NOISE; PARAMETERS; PROBABILITY; SKILLING NESTED SAMPLING;

EID: 84895766683     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0088419     Document Type: Article
Times cited : (47)

References (80)
  • 3
    • 33847314052 scopus 로고    scopus 로고
    • Parameter estimation using simulated annealing for S-system models of biochemical networks
    • DOI 10.1093/bioinformatics/btl522
    • Gonzalez O, Kuer C, Jung K, Naval P, Mendoza E (2007) Parameter estimation using simulated annealing for s-system models of biochemical networks. Bioinformatics 23: 480-486. (Pubitemid 46323129)
    • (2007) Bioinformatics , vol.23 , Issue.4 , pp. 480-486
    • Gonzalez, O.R.1    Kuper, C.2    Jung, K.3    Naval Jr., P.C.4    Mendoza, E.5
  • 4
    • 78751647229 scopus 로고    scopus 로고
    • Parameter estimation in systems biology models using spline approximation
    • Zhan C, Yeung L (2011) Parameter estimation in systems biology models using spline approximation. BMC Systems Biology 5: 14.
    • (2011) BMC Systems Biology , vol.5 , pp. 14
    • Zhan, C.1    Yeung, L.2
  • 5
    • 33749340654 scopus 로고    scopus 로고
    • Parameter estimation in biochemical systems models with alternating regression
    • Chou I, Martens H, Voit E (2006) Parameter estimation in biochemical systems models with alternating regression. Theor Biol Med Model 19: 3-25.
    • (2006) Theor Biol Med Model , vol.19 , pp. 3-25
    • Chou, I.1    Martens, H.2    Voit, E.3
  • 7
    • 33947641481 scopus 로고    scopus 로고
    • Parameter estimation in ordinary differential equations for biochemical processes using the method of multiple shooting
    • DOI 10.1049/iet-syb:20060067
    • Peifer M, Timmer J (2007) Parameter estimation in ordinary differential equations for biochemical processes using the method of multiple shooting. IET Syst Biol 1: 78-88. (Pubitemid 46488241)
    • (2007) IET Systems Biology , vol.1 , Issue.2 , pp. 78-88
    • Peifer, M.1    Timmer, J.2
  • 8
    • 58149142997 scopus 로고    scopus 로고
    • Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems
    • Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf M (2009) Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. Journal of the Royal Society Interface 6: 187-202.
    • (2009) Journal of the Royal Society Interface , vol.6 , pp. 187-202
    • Toni, T.1    Welch, D.2    Strelkowa, N.3    Ipsen, A.4    Stumpf, M.5
  • 9
    • 47749140357 scopus 로고    scopus 로고
    • Parameter inference for biochemical systems that undergo a Hopf bifurcation
    • Kirk P, Toni T, Stumpf M (2008) Parameter inference for biochemical systems that undergo a Hopf bifurcation. Biophysical Journal 95: 540-549.
    • (2008) Biophysical Journal , vol.95 , pp. 540-549
    • Kirk, P.1    Toni, T.2    Stumpf, M.3
  • 10
    • 79959391599 scopus 로고    scopus 로고
    • Automated Bayesian model development for frequency detection in biological time series
    • Granqvist E, Oldroyd G, Morris R (2011) Automated Bayesian model development for frequency detection in biological time series. BMC Systems Biology 5: 97.
    • (2011) BMC Systems Biology , vol.5 , pp. 97
    • Granqvist, E.1    Oldroyd, G.2    Morris, R.3
  • 11
    • 77950841799 scopus 로고    scopus 로고
    • Parameter estimation and model selection in computational biology
    • Lillacci G, Khammash M (2010) Parameter estimation and model selection in computational biology. PLoS Computational Biology 6: e1000696.
    • (2010) PLoS Computational Biology , vol.6
    • Lillacci, G.1    Khammash, M.2
  • 12
    • 36549012683 scopus 로고    scopus 로고
    • Estimating parameters and hidden variables in non-linear state-space models based on ODEs for biological networks inference
    • DOI 10.1093/bioinformatics/btm510
    • Quach M, Brunel N, d'Alché Buc F (2007) Estimating parameters and hidden variables in nonlinear state-space models based on ODEs for biological networks inference. Bioinformatics 23: 3209-3216. (Pubitemid 350187524)
    • (2007) Bioinformatics , vol.23 , Issue.23 , pp. 3209-3216
    • Quach, M.1    Brunel, N.2    D'alche-Buc, F.3
  • 13
    • 68049141586 scopus 로고    scopus 로고
    • A review of recent advances in global optimization
    • Floudas CA, Gounaris CE (2009) A review of recent advances in global optimization. J of Global Optimization 45: 3-38.
    • (2009) J of Global Optimization , vol.45 , pp. 3-38
    • Floudas, C.A.1    Gounaris, C.E.2
  • 14
    • 0242574982 scopus 로고    scopus 로고
    • Parameter estimation in biochemical pathways: A comparison of global optimization methods
    • DOI 10.1101/gr.1262503
    • Moles C, Mendes P, Banga J (2003) Parameter estimation in biochemical pathways: a comparisonof global optimization methods. Genome Research 13: 2467-2474. (Pubitemid 37428271)
    • (2003) Genome Research , vol.13 , Issue.11 , pp. 2467-2474
    • Moles, C.G.1    Mendes, P.2    Banga, J.R.3
  • 16
    • 84856546750 scopus 로고    scopus 로고
    • Understanding biological timing using mechanistic and black-box models
    • Dalchau N (2012) Understanding biological timing using mechanistic and black-box models. New Phytol 193: 852-8.
    • (2012) New Phytol , vol.193 , pp. 852-858
    • Dalchau, N.1
  • 18
    • 0032406131 scopus 로고    scopus 로고
    • Non-linear optimization of biochemical pathways: Applications to metabolic engineering and parameter estimation
    • DOI 10.1093/bioinformatics/14.10.869
    • Mendes P, Kell D (1998) Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14: 869-883. (Pubitemid 29041543)
    • (1998) Bioinformatics , vol.14 , Issue.10 , pp. 869-883
    • Mendes, P.1    Kell, D.B.2
  • 19
    • 46349105936 scopus 로고    scopus 로고
    • Optimization in computational systems biology
    • Banga J (2008) Optimization in computational systems biology. BMC Systems Biology 2: 47.
    • (2008) BMC Systems Biology , vol.2 , pp. 47
    • Banga, J.1
  • 20
    • 84870577280 scopus 로고    scopus 로고
    • Non linear programming (nlp) formulation for quantitative modeling of protein signal transduction pathways
    • Mitsos A, Melas IN, Morris MK, Saez-Rodriguez J, Lauffenburger DA, et al. (2012) Non linear programming (nlp) formulation for quantitative modeling of protein signal transduction pathways. PLoS One 7: e50085.
    • (2012) PLoS One , vol.7
    • Mitsos, A.1    Melas, I.N.2    Morris, M.K.3    Saez-Rodriguez, J.4    Lauffenburger, D.A.5
  • 22
    • 69449098014 scopus 로고    scopus 로고
    • Estimating Bayes factors via thermodynamic integration and population MCMC
    • Calderhead B, Girolami M (2009) Estimating Bayes factors via thermodynamic integration and population MCMC. Computational Statistics & Data Analysis 53: 4028-4045.
    • (2009) Computational Statistics & Data Analysis , vol.53 , pp. 4028-4045
    • Calderhead, B.1    Girolami, M.2
  • 23
    • 78149457680 scopus 로고    scopus 로고
    • When the optimal is not the best: Parameter estimation in complex biological models
    • Slezak D, Suárez C, Cecchi G, Marshall G, Stolovitzky G (2010) When the optimal is not the best: Parameter estimation in complex biological models. PloS one 5: e13283.
    • (2010) PloS One , vol.5
    • Slezak, D.1    Suárez, C.2    Cecchi, G.3    Marshall, G.4    Stolovitzky, G.5
  • 25
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Second International Symposium on Information Theory. pp. 267-281.
    • (1973) Second International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 26
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H (1974) A new look at the statistical model identification. Automatic Control, IEEE Transactions on 19: 716-723.
    • (1974) Automatic Control, IEEE Transactions on , vol.19 , pp. 716-723
    • Akaike, H.1
  • 29
    • 79954550872 scopus 로고    scopus 로고
    • Practical limits for reverse engineering of dynamical systems: A statistical analysis of sensitivity and parameter inferability in systems biology models
    • Erguler K, Stumpf MPH (2011) Practical limits for reverse engineering of dynamical systems: a statistical analysis of sensitivity and parameter inferability in systems biology models. Mol BioSyst 7: 1593-1602.
    • (2011) Mol BioSyst , vol.7 , pp. 1593-1602
    • Erguler, K.1    Stumpf, M.P.H.2
  • 32
    • 0003414592 scopus 로고
    • Oxford University Press, third edition
    • Jeffreys H (1961) Theory of Probability. Oxford University Press, third edition.
    • (1961) Theory of Probability
    • Jeffreys, H.1
  • 36
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay DJ (1991) Bayesian interpolation. Neural Computation 4: 415-447.
    • (1991) Neural Computation , vol.4 , pp. 415-447
    • MacKay, D.J.1
  • 37
    • 9644301241 scopus 로고    scopus 로고
    • Model selection and model averaging in phylogenetics: Advantages of akaike information criterion and bayesian approaches over likelihood ratio tests
    • DOI 10.1080/10635150490522304
    • Posada D, Buckley T (2004) Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53: 793-808. (Pubitemid 39568279)
    • (2004) Systematic Biology , vol.53 , Issue.5 , pp. 793-808
    • Posada, D.1    Buckley, T.R.2
  • 38
    • 34250658998 scopus 로고    scopus 로고
    • Bayesian methods in bioinformatics and computational systems biology
    • Wilkinson D (2007) Bayesian methods in bioinformatics and computational systems biology. Briefings in Bioinformatics 8: 109-116.
    • (2007) Briefings in Bioinformatics , vol.8 , pp. 109-116
    • Wilkinson, D.1
  • 39
    • 0034948896 scopus 로고    scopus 로고
    • A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes
    • Baldi P, Long AD (2001) A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17: 509-519. (Pubitemid 32600497)
    • (2001) Bioinformatics , vol.17 , Issue.6 , pp. 509-519
    • Baldi, P.1    Long, A.D.2
  • 40
    • 33644826560 scopus 로고    scopus 로고
    • Computing Bayes factors using thermodynamic integration
    • DOI 10.1080/10635150500433722, PII G4465276345678
    • Lartillot N, Philippe H (2006) Computing Bayes factors using thermodynamic integration. Systematic biology 55: 195-207. (Pubitemid 43355101)
    • (2006) Systematic Biology , vol.55 , Issue.2 , pp. 195-207
    • Lartillot, N.1    Philippe, H.2
  • 41
    • 79952110708 scopus 로고    scopus 로고
    • Parameter inference and model selection in signaling pathway models
    • Toni T, Stumpf MPH (2010) Parameter inference and model selection in signaling pathway models. Methods Mol Biol 673: 283-95.
    • (2010) Methods Mol Biol , vol.673 , pp. 283-295
    • Toni, T.1    Stumpf, M.P.H.2
  • 42
    • 77955565010 scopus 로고    scopus 로고
    • Efficient sampling of atomic configurational spaces
    • Pártay LB, Bartók AP, Csányi G (2010) Efficient sampling of atomic configurational spaces. J Phys Chem B 114: 10502-12.
    • (2010) J Phys Chem B , vol.114 , pp. 10502-10512
    • Pártay, L.B.1    Bartók, A.P.2    Csányi, G.3
  • 43
    • 84857302692 scopus 로고    scopus 로고
    • Exploring the energy landscapes of protein folding simulations with Bayesian computation
    • Burkoff N, Várnai C, Wells S, Wild D (2012) Exploring the energy landscapes of protein folding simulations with Bayesian computation. Biophysical Journal 102: 878-886.
    • (2012) Biophysical Journal , vol.102 , pp. 878-886
    • Burkoff, N.1    Várnai, C.2    Wells, S.3    Wild, D.4
  • 44
    • 84859758552 scopus 로고    scopus 로고
    • Statistical analysis of nonlinear dynamical systems using differential geometric sampling methods
    • Calderhead B, Girolami M (2011) Statistical analysis of nonlinear dynamical systems using differential geometric sampling methods. Interface Focus 1: 821-35.
    • (2011) Interface Focus , vol.1 , pp. 821-835
    • Calderhead, B.1    Girolami, M.2
  • 46
    • 84856745374 scopus 로고    scopus 로고
    • Bayesian functional integral method for inferring continuous data from discrete measurements
    • Heuett W, Miller B, Racette S, Holloszy J, Chow C, et al. (2012) Bayesian functional integral method for inferring continuous data from discrete measurements. Biophysical Journal 102: 399-406.
    • (2012) Biophysical Journal , vol.102 , pp. 399-406
    • Heuett, W.1    Miller, B.2    Racette, S.3    Holloszy, J.4    Chow, C.5
  • 47
    • 84864498617 scopus 로고    scopus 로고
    • Bayesian model selection validates a biokinetic model for zirconium processing in humans
    • Schmidl D, Hug S, Li WB, Greiter MB, Theis FJ (2012) Bayesian model selection validates a biokinetic model for zirconium processing in humans. BMC Systems Biology 6: 95.
    • (2012) BMC Systems Biology , vol.6 , pp. 95
    • Schmidl, D.1    Hug, S.2    Li, W.B.3    Greiter, M.B.4    Theis, F.J.5
  • 48
    • 35148901361 scopus 로고    scopus 로고
    • Nested Sampling for General Bayesian Computation
    • Skilling J (2006) Nested Sampling for General Bayesian Computation. Bayesian Analysis 1: 833-860.
    • (2006) Bayesian Analysis , vol.1 , pp. 833-860
    • Skilling, J.1
  • 51
    • 38849196929 scopus 로고    scopus 로고
    • Multimodal nested sampling: An efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses
    • Feroz F, Hobson M (2008) Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses. Monthly Notices of the Royal Astronomical Society 384: 449-463.
    • (2008) Monthly Notices of the Royal Astronomical Society , vol.384 , pp. 449-463
    • Feroz, F.1    Hobson, M.2
  • 52
    • 84880895104 scopus 로고    scopus 로고
    • Nested sampling for parameter inference in systems biology: Application to an exemplar circadian model
    • Aitken S, Akman O (2013) Nested sampling for parameter inference in systems biology: application to an exemplar circadian model. BMC Systems Biology 7: 72.
    • (2013) BMC Systems Biology , vol.7 , pp. 72
    • Aitken, S.1    Akman, O.2
  • 53
    • 59849083255 scopus 로고    scopus 로고
    • PhD thesis, Gatsby computational neuroscience unit, University College London
    • Murray I (2007) Advances in Markov chain Monte Carlo methods. PhD thesis, Gatsby computational neuroscience unit, University College London.
    • (2007) Advances in Markov Chain Monte Carlo Methods
    • Murray, I.1
  • 58
    • 70349215183 scopus 로고    scopus 로고
    • MULTINEST: An efficient and robust Bayesian inference tool for cosmology and particle physics
    • Feroz F, Hobson M, Bridges M (2009) MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics. Monthly Notices of the Royal Astronomical Society 398: 1601-1614.
    • (2009) Monthly Notices of the Royal Astronomical Society , vol.398 , pp. 1601-1614
    • Feroz, F.1    Hobson, M.2    Bridges, M.3
  • 60
    • 57049089078 scopus 로고    scopus 로고
    • Parameter estimation and determinability analysis applied to Drosophila gap gene circuits
    • Ashyraliyev M, Jaeger J, Blom J (2008) Parameter estimation and determinability analysis applied to Drosophila gap gene circuits. BMC Systems Biology 2: 83.
    • (2008) BMC Systems Biology , vol.2 , pp. 83
    • Ashyraliyev, M.1    Jaeger, J.2    Blom, J.3
  • 62
    • 84863304598 scopus 로고    scopus 로고
    • R Foundation for Statistical Computing, Vienna, Austria. Available
    • R Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available: http://www.R-project.org.
    • (2013) R: A Language and Environment for Statistical Computing
  • 64
    • 84964720112 scopus 로고    scopus 로고
    • Pippipainless parsing, post-processing and plotting of posterior and likelihood samples
    • Scott P (2012) Pippipainless parsing, post-processing and plotting of posterior and likelihood samples. The European Physical Journal Plus 127: 1-4.
    • (2012) The European Physical Journal Plus , vol.127 , pp. 1-4
    • Scott, P.1
  • 66
    • 84864020497 scopus 로고    scopus 로고
    • Estimating the evidence a review
    • Friel N, Wyse J (2012) Estimating the evidence a review. Statistica Neerlandica 66: 288-308.
    • (2012) Statistica Neerlandica , vol.66 , pp. 288-308
    • Friel, N.1    Wyse, J.2
  • 67
    • 84876746933 scopus 로고    scopus 로고
    • Interlocking feedback loops govern the dynamic behavior of the oral transition in arabidopsis
    • Jaeger KE, Pullen N, Lamzin S, Morris RJ, Wigge PA (2013) Interlocking feedback loops govern the dynamic behavior of the oral transition in arabidopsis. The Plant Cell Online 25: 820-833.
    • (2013) The Plant Cell Online , vol.25 , pp. 820-833
    • Jaeger, K.E.1    Pullen, N.2    Lamzin, S.3    Morris, R.J.4    Wigge, P.A.5
  • 68
    • 0034688173 scopus 로고    scopus 로고
    • A synthetic oscillatory network of transcriptional regulators
    • DOI 10.1038/35002125
    • Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403: 335-8. (Pubitemid 30062393)
    • (2000) Nature , vol.403 , Issue.6767 , pp. 335-338
    • Elowitz, M.B.1    Leibier, S.2
  • 69
    • 40749094910 scopus 로고    scopus 로고
    • Bayesian ranking of biochemical system models
    • DOI 10.1093/bioinformatics/btm607
    • Vyshemirsky V, Girolami M (2008) Bayesian ranking of biochemical system models. Bioinformatics 24: 833-839. (Pubitemid 351386922)
    • (2008) Bioinformatics , vol.24 , Issue.6 , pp. 833-839
    • Vyshemirsky, V.1    Girolami, M.A.2
  • 72
    • 0002604954 scopus 로고
    • Variazioni efluttuazioni del numero d'individui in specie animali conviventi
    • Volterra V (1926) Variazioni efluttuazioni del numero d'individui in specie animali conviventi. Memorie della R Acc dei Lincei 2: 31-113.
    • (1926) Memorie Della R Acc dei Lincei , vol.2 , pp. 31-113
    • Volterra, V.1
  • 74
    • 0018784247 scopus 로고
    • Simple chemical reaction systems with limit cycle behaviour
    • Schnakenberg J (1979) Simple chemical reaction systems with limit cycle behaviour. Journal of Theoretical Biology 81: 389-400.
    • (1979) Journal of Theoretical Biology , vol.81 , pp. 389-400
    • Schnakenberg, J.1
  • 78
    • 33845360384 scopus 로고    scopus 로고
    • Model weights and the foundations of multimodel inference
    • DOI 10.1890/0012-9658(2006)87[2626:MWATFO]2.0.CO;2
    • Link W, Barker R (2006) Model weights and the foundations of multimodel inference. Ecology 87: 2626-2635. (Pubitemid 44885973)
    • (2006) Ecology , vol.87 , Issue.10 , pp. 2626-2635
    • Link, W.A.1    Barker, R.J.2
  • 79
    • 0003611509 scopus 로고    scopus 로고
    • Bayesian Learning for Neural Networks
    • Springer, 1 edition
    • Neal RM (1996) Bayesian Learning for Neural Networks (Lecture Notes in Statistics). Springer, 1 edition.
    • (1996) Lecture Notes in Statistics
    • Neal, R.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.