-
1
-
-
75149191785
-
Tailored randomized-block MCMC methods with application to DSGE models
-
Chib, S., Ramamurthy, S.: Tailored randomized-block MCMC methods with application to DSGE models. J. Econom. 155, 19-38 (2010).
-
(2010)
J. Econom.
, vol.155
, pp. 19-38
-
-
Chib, S.1
Ramamurthy, S.2
-
3
-
-
33644899039
-
Simulated tempering: a new Monte Carlo scheme
-
Marinari, E., Parisi, G.: Simulated tempering: a new Monte Carlo scheme. Europhys. Lett. 19, 451 (1992).
-
(1992)
Europhys. Lett.
, vol.19
, pp. 451
-
-
Marinari, E.1
Parisi, G.2
-
4
-
-
33644772615
-
A nested sampling algorithm for cosmological model selection
-
Mukherjee, P., Parkinson, D., Liddle, A. R.: A nested sampling algorithm for cosmological model selection. Astrophys. J. 638, L51-L54 (2006).
-
(2006)
Astrophys. J.
, vol.638
, pp. 51-54
-
-
Mukherjee, P.1
Parkinson, D.2
Liddle, A.R.3
-
5
-
-
59849083255
-
-
PhD thesis, Gatsby computational neuroscience unit, University College London
-
Murray, I.: Advances in Markov chain Monte Carlo methods. PhD thesis, Gatsby computational neuroscience unit, University College London (2007).
-
(2007)
Advances in Markov chain Monte Carlo methods
-
-
Murray, I.1
-
6
-
-
1642370803
-
Slice sampling (with discussion)
-
Neal, R. M.: Slice sampling (with discussion). Ann. Stat. 31, 705-767 (2003).
-
(2003)
Ann. Stat.
, vol.31
, pp. 705-767
-
-
Neal, R.M.1
-
7
-
-
77955565010
-
Efficient sampling of atomic configurational spaces
-
Pártay, L. B., Bartók, A. P., Csányi, G.: Efficient sampling of atomic configurational spaces. J. Phys. Chem. B 114(32), 10502-10512 (2010).
-
(2010)
J. Phys. Chem. B
, vol.114
, Issue.32
, pp. 10502-10512
-
-
Pártay, L.B.1
Bartók, A.P.2
Csányi, G.3
-
8
-
-
0031285157
-
Weak convergence and optimal scaling of random walk Metropolis algorithms
-
Roberts, G. O., Gelman, A., Gilks, W. R.: Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Probab. 7(1), 110-120 (1997).
-
(1997)
Ann. Appl. Probab.
, vol.7
, Issue.1
, pp. 110-120
-
-
Roberts, G.O.1
Gelman, A.2
Gilks, W.R.3
-
9
-
-
84863994792
-
Optimal proposal distributions and adaptive MCMC
-
S. P. Brooks, A. Gelman, G. Jones, and X.-L. Meng (Eds.), Boca Raton: Chapman and Hall/CRC Press
-
Rosenthal, J. S.: Optimal proposal distributions and adaptive MCMC. In: Brooks, S. P., Gelman, A., Jones, G., Meng, X.-L. (eds.) Handbook of Markov Chain Monte Carlo. Chapman and Hall/CRC Press, Boca Raton (2010).
-
(2010)
Handbook of Markov Chain Monte Carlo
-
-
Rosenthal, J.S.1
-
11
-
-
35148901361
-
Nested sampling for general Bayesian computation
-
Skilling, J.: Nested sampling for general Bayesian computation. Bayesian Anal. 4, 833-860 (2006).
-
(2006)
Bayesian Anal.
, vol.4
, pp. 833-860
-
-
Skilling, J.1
-
13
-
-
6644221271
-
Efficient, multiple-range random walk algorithm to calculate the density of states
-
Wang, F., Landau, D. P.: Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86, 2050 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 2050
-
-
Wang, F.1
Landau, D.P.2
|