메뉴 건너뛰기




Volumn 265, Issue , 2014, Pages 195-210

Finite difference methods for the time fractional diffusion equation on non-uniform meshes

Author keywords

Convergence; Finite difference method; Fractional diffusion equation; Non uniform meshes; Stability

Indexed keywords

DIFFUSION; NUMERICAL METHODS; PARTIAL DIFFERENTIAL EQUATIONS;

EID: 84894483339     PISSN: 00219991     EISSN: 10902716     Source Type: Journal    
DOI: 10.1016/j.jcp.2014.02.008     Document Type: Article
Times cited : (262)

References (40)
  • 3
    • 0040307478 scopus 로고
    • Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications
    • Bouchaud J., Georges A. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Phys. Rep. 1990, 195:127-293.
    • (1990) Phys. Rep. , vol.195 , pp. 127-293
    • Bouchaud, J.1    Georges, A.2
  • 4
    • 0002641421 scopus 로고    scopus 로고
    • The random walk's guide to anomalous diffusion: A fractional dynamics approach
    • Metzler R., Klafter J. The random walk's guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339:1-77.
    • (2000) Phys. Rep. , vol.339 , pp. 1-77
    • Metzler, R.1    Klafter, J.2
  • 5
    • 0001691616 scopus 로고
    • Observations of anomalous diffusion and Lévy flights in a 2-dimensional rotating flow
    • Solomon T.H., Weeks E.R., Swinney H.L. Observations of anomalous diffusion and Lévy flights in a 2-dimensional rotating flow. Phys. Rev. Lett. 1993, 71:3975-3979.
    • (1993) Phys. Rev. Lett. , vol.71 , pp. 3975-3979
    • Solomon, T.H.1    Weeks, E.R.2    Swinney, H.L.3
  • 6
    • 0009481303 scopus 로고
    • Fractional diffusion equation
    • Wyss W. Fractional diffusion equation. J. Math. Phys. 1986, 27:2782-2785.
    • (1986) J. Math. Phys. , vol.27 , pp. 2782-2785
    • Wyss, W.1
  • 7
    • 30244460855 scopus 로고    scopus 로고
    • The fundamental solutions for the fractional diffusion-wave equation
    • Mainardi F. The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 1996, 9:23-28.
    • (1996) Appl. Math. Lett. , vol.9 , pp. 23-28
    • Mainardi, F.1
  • 8
    • 0036650850 scopus 로고    scopus 로고
    • Time fractional diffusion: a discrete random walk approach
    • Gorenflo R., Mainardi F., Moretti D., Paradisi P. Time fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 2002, 29:129-143.
    • (2002) Nonlinear Dyn. , vol.29 , pp. 129-143
    • Gorenflo, R.1    Mainardi, F.2    Moretti, D.3    Paradisi, P.4
  • 9
    • 0036650559 scopus 로고    scopus 로고
    • Solution for a fractional diffusion-wave equation defined in a bounded domain
    • Agrawal O.P. Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dyn. 2002, 29:145-155.
    • (2002) Nonlinear Dyn. , vol.29 , pp. 145-155
    • Agrawal, O.P.1
  • 10
    • 0000717432 scopus 로고
    • Discretized fractional calculus
    • Lubich Ch. Discretized fractional calculus. SIAM J. Math. Anal. 1986, 17:704-719.
    • (1986) SIAM J. Math. Anal. , vol.17 , pp. 704-719
    • Lubich, C.1
  • 11
    • 84966227123 scopus 로고
    • Fractional linear multistep methods for Abel-Volterra integral equations of the second kind
    • Lubich Ch. Fractional linear multistep methods for Abel-Volterra integral equations of the second kind. Math. Comput. 1985, 45:463-469.
    • (1985) Math. Comput. , vol.45 , pp. 463-469
    • Lubich, C.1
  • 12
    • 0001754759 scopus 로고
    • A numerical method for a partial integro-differential equation
    • Sanz-Serna J.M. A numerical method for a partial integro-differential equation. SIAM J. Numer. Anal. 1988, 25:319-327.
    • (1988) SIAM J. Numer. Anal. , vol.25 , pp. 319-327
    • Sanz-Serna, J.M.1
  • 13
    • 0025383598 scopus 로고
    • A difference scheme for a nonlinear partial integrodifferential equation
    • Lopez-Marcos J.C. A difference scheme for a nonlinear partial integrodifferential equation. SIAM J. Numer. Anal. 1990, 27:20-31.
    • (1990) SIAM J. Numer. Anal. , vol.27 , pp. 20-31
    • Lopez-Marcos, J.C.1
  • 14
    • 84968521959 scopus 로고
    • Finite element approximation of a parabolic integro-differential equation with weakly singular kernel
    • Chen C., Thomée V., Wahlbin L.B. Finite element approximation of a parabolic integro-differential equation with weakly singular kernel. Math. Comput. 1992, 58:587-602.
    • (1992) Math. Comput. , vol.58 , pp. 587-602
    • Chen, C.1    Thomée, V.2    Wahlbin, L.B.3
  • 15
    • 0012661804 scopus 로고
    • A finite difference scheme for partial integro-differential equations with a weakly singular kernel
    • Tang T. A finite difference scheme for partial integro-differential equations with a weakly singular kernel. Appl. Numer. Math. 1993, 11:309-319.
    • (1993) Appl. Numer. Math. , vol.11 , pp. 309-319
    • Tang, T.1
  • 16
    • 33646398146 scopus 로고    scopus 로고
    • Convolution quadrature time discretization of fractional diffusion-wave equations
    • Cuesta E., Lubich C., Palencia C. Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 2006, 75:673-696.
    • (2006) Math. Comput. , vol.75 , pp. 673-696
    • Cuesta, E.1    Lubich, C.2    Palencia, C.3
  • 17
    • 84867978055 scopus 로고    scopus 로고
    • Implicit difference approximation for the time fractional diffusion equation
    • Zhuang P., Liu F. Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 2006, 22:87-99.
    • (2006) J. Appl. Math. Comput. , vol.22 , pp. 87-99
    • Zhuang, P.1    Liu, F.2
  • 18
    • 46049100549 scopus 로고    scopus 로고
    • A fractional-order implicit difference approximation for the space-time fractional diffusion equation
    • Liu F., Zhuang P., Anh V., Turner I. A fractional-order implicit difference approximation for the space-time fractional diffusion equation. ANZIAM J. 2005, 47:C48-C68.
    • (2005) ANZIAM J. , vol.47
    • Liu, F.1    Zhuang, P.2    Anh, V.3    Turner, I.4
  • 19
    • 30744474991 scopus 로고    scopus 로고
    • A fully discrete difference scheme for a diffusion-wave system
    • Sun Z.Z., Wu X.N. A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 2006, 56:193-209.
    • (2006) Appl. Numer. Math. , vol.56 , pp. 193-209
    • Sun, Z.Z.1    Wu, X.N.2
  • 20
    • 77952888765 scopus 로고    scopus 로고
    • A compact difference scheme for the fractional diffusion-wave equation
    • Du R., Cao W.R., Sun Z.Z. A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 2010, 34:2998-3007.
    • (2010) Appl. Math. Model. , vol.34 , pp. 2998-3007
    • Du, R.1    Cao, W.R.2    Sun, Z.Z.3
  • 21
    • 77954142858 scopus 로고    scopus 로고
    • Numerical simulations of 2D fractional subdiffusion problems
    • Brunner H., Ling L., Yamamoto M. Numerical simulations of 2D fractional subdiffusion problems. J. Comput. Phys. 2010, 229:6613-6622.
    • (2010) J. Comput. Phys. , vol.229 , pp. 6613-6622
    • Brunner, H.1    Ling, L.2    Yamamoto, M.3
  • 22
    • 80053633596 scopus 로고    scopus 로고
    • Alternating direction implicit schemes for the two-dimensional fractional subdiffusion equation
    • Zhang Y.N., Sun Z.Z. Alternating direction implicit schemes for the two-dimensional fractional subdiffusion equation. J. Comput. Phys. 2011, 230:8713-8728.
    • (2011) J. Comput. Phys. , vol.230 , pp. 8713-8728
    • Zhang, Y.N.1    Sun, Z.Z.2
  • 23
    • 84865575179 scopus 로고    scopus 로고
    • Compact ADI schemes for the two-dimensional fractional diffusion-wave equation
    • Zhang Y.N., Sun Z.Z., Zhao X. Compact ADI schemes for the two-dimensional fractional diffusion-wave equation. SIAM J. Numer. Anal. 2012, 50:1535-1555.
    • (2012) SIAM J. Numer. Anal. , vol.50 , pp. 1535-1555
    • Zhang, Y.N.1    Sun, Z.Z.2    Zhao, X.3
  • 24
    • 59349113701 scopus 로고    scopus 로고
    • Finite element method for the space and time fractional Fokker-Planck equation
    • Deng W.H. Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 2008, 47:204-226.
    • (2008) SIAM J. Numer. Anal. , vol.47 , pp. 204-226
    • Deng, W.H.1
  • 25
    • 79956124918 scopus 로고    scopus 로고
    • A box-type scheme for fractional subdiffusion equation with Neumann boundary conditions
    • Zhao X., Sun Z.Z. A box-type scheme for fractional subdiffusion equation with Neumann boundary conditions. J. Comput. Phys. 2011, 230:6061-6074.
    • (2011) J. Comput. Phys. , vol.230 , pp. 6061-6074
    • Zhao, X.1    Sun, Z.Z.2
  • 26
    • 78649334165 scopus 로고    scopus 로고
    • A compact difference scheme for the fractional subdiffusion equations
    • Gao G.H., Sun Z.Z. A compact difference scheme for the fractional subdiffusion equations. J. Comput. Phys. 2011, 230:586-595.
    • (2011) J. Comput. Phys. , vol.230 , pp. 586-595
    • Gao, G.H.1    Sun, Z.Z.2
  • 27
    • 17144427014 scopus 로고    scopus 로고
    • The accuracy and stability of an implicit solution method for the fractional diffusion equation
    • Langlands T.A.M., Henry B.I. The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 2005, 205:719-736.
    • (2005) J. Comput. Phys. , vol.205 , pp. 719-736
    • Langlands, T.A.M.1    Henry, B.I.2
  • 28
    • 34547548712 scopus 로고    scopus 로고
    • Finite difference/spectral approximations for the time-fractional diffusion equation
    • Lin Y., Xu C. Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 2007, 225:1533-1552.
    • (2007) J. Comput. Phys. , vol.225 , pp. 1533-1552
    • Lin, Y.1    Xu, C.2
  • 29
    • 79955669422 scopus 로고    scopus 로고
    • Finite difference/spectral approximations for the fractional cable equation
    • Lin Y., Li X., Xu C. Finite difference/spectral approximations for the fractional cable equation. Math. Comput. 2011, 80:1369-1396.
    • (2011) Math. Comput. , vol.80 , pp. 1369-1396
    • Lin, Y.1    Li, X.2    Xu, C.3
  • 30
    • 84862921732 scopus 로고    scopus 로고
    • Error estimates of Crank-Nicolson type difference schemes for the subdiffusion equation
    • Zhang Y.N., Sun Z.Z., Wu H.W. Error estimates of Crank-Nicolson type difference schemes for the subdiffusion equation. SIAM J. Numer. Anal. 2011, 49:2302-2322.
    • (2011) SIAM J. Numer. Anal. , vol.49 , pp. 2302-2322
    • Zhang, Y.N.1    Sun, Z.Z.2    Wu, H.W.3
  • 31
    • 77958536189 scopus 로고    scopus 로고
    • A space-time spectral method for the time fractional diffusion equation
    • Li X., Xu C. A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 2009, 47:2108-2131.
    • (2009) SIAM J. Numer. Anal. , vol.47 , pp. 2108-2131
    • Li, X.1    Xu, C.2
  • 32
    • 77955704784 scopus 로고    scopus 로고
    • Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation
    • Chen C.M., Liu F., Anh V., Turner I. Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 2010, 32:1740-1760.
    • (2010) SIAM J. Sci. Comput. , vol.32 , pp. 1740-1760
    • Chen, C.M.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 33
    • 84966204227 scopus 로고
    • The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes
    • Brunner H. The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes. Math. Comput. 1985, 45:417-437.
    • (1985) Math. Comput. , vol.45 , pp. 417-437
    • Brunner, H.1
  • 34
    • 1542766225 scopus 로고
    • A note on collocation methods for Volterra integro-differential equations with weakly singular kernels
    • Tang T. A note on collocation methods for Volterra integro-differential equations with weakly singular kernels. IMA J. Numer. Anal. 1993, 13:93-99.
    • (1993) IMA J. Numer. Anal. , vol.13 , pp. 93-99
    • Tang, T.1
  • 35
    • 67949106454 scopus 로고    scopus 로고
    • On a graded mesh method for a class of weakly singular Volterra integral equations
    • Ma J., Jiang Y. On a graded mesh method for a class of weakly singular Volterra integral equations. J. Comput. Appl. Math. 2009, 231:807-814.
    • (2009) J. Comput. Appl. Math. , vol.231 , pp. 807-814
    • Ma, J.1    Jiang, Y.2
  • 36
    • 79953716814 scopus 로고    scopus 로고
    • An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements
    • Mustapha K. An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements. IMA J. Numer. Anal. 2011, 31:719-739.
    • (2011) IMA J. Numer. Anal. , vol.31 , pp. 719-739
    • Mustapha, K.1
  • 37
    • 84865615010 scopus 로고    scopus 로고
    • A finite difference scheme with non-uniform timesteps for fractional diffusion equations
    • Yuste S.B., Quintana-Murillo J. A finite difference scheme with non-uniform timesteps for fractional diffusion equations. Comput. Phys. Commun. 2012, 183:2594-2600.
    • (2012) Comput. Phys. Commun. , vol.183 , pp. 2594-2600
    • Yuste, S.B.1    Quintana-Murillo, J.2
  • 39
    • 77649151220 scopus 로고    scopus 로고
    • Error estimate of fourth-order compact scheme for linear Schrodinger equations
    • Liao H.L., Sun Z.Z., Shi H.S. Error estimate of fourth-order compact scheme for linear Schrodinger equations. SIAM J. Numer. Anal. 2010, 47:4381-4401.
    • (2010) SIAM J. Numer. Anal. , vol.47 , pp. 4381-4401
    • Liao, H.L.1    Sun, Z.Z.2    Shi, H.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.