-
3
-
-
0040307478
-
Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications
-
Bouchaud J., Georges A. Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 1990, 195:127-293.
-
(1990)
Phys. Rep.
, vol.195
, pp. 127-293
-
-
Bouchaud, J.1
Georges, A.2
-
4
-
-
0002641421
-
The random walk's guide to anomalous diffusion: a fractional dynamics approach
-
Metzler R., Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 2000, 339:1-77.
-
(2000)
Phys. Rep.
, vol.339
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
5
-
-
0001691616
-
Observations of anomalous diffusion and Lévy flights in a 2-dimensional rotating flow
-
Solomon T.H., Weeks E.R., Swinney H.L. Observations of anomalous diffusion and Lévy flights in a 2-dimensional rotating flow. Phys. Rev. Lett. 1993, 71:3975-3979.
-
(1993)
Phys. Rev. Lett.
, vol.71
, pp. 3975-3979
-
-
Solomon, T.H.1
Weeks, E.R.2
Swinney, H.L.3
-
6
-
-
0001983732
-
Fractional calculus: some numerical methods
-
Springer-Verlag, NewYork, S. Carpinteri, F. Mainardi (Eds.)
-
Gorenflo R. Fractional calculus: some numerical methods. Fractals and Fracional Calculus in Continuum Mechanics 1997, 277-290. Springer-Verlag, NewYork. S. Carpinteri, F. Mainardi (Eds.).
-
(1997)
Fractals and Fracional Calculus in Continuum Mechanics
, pp. 277-290
-
-
Gorenflo, R.1
-
7
-
-
0009481303
-
Fractional diffusion equation
-
Wyss W. Fractional diffusion equation. J. Math. Phys. 1986, 27:2782-2785.
-
(1986)
J. Math. Phys.
, vol.27
, pp. 2782-2785
-
-
Wyss, W.1
-
8
-
-
0001553919
-
Fractional diffusion and wave equations
-
Schneider W.R., Wyss W. Fractional diffusion and wave equations. J. Math. Phys. 1989, 30:134-144.
-
(1989)
J. Math. Phys.
, vol.30
, pp. 134-144
-
-
Schneider, W.R.1
Wyss, W.2
-
9
-
-
30244460855
-
The fundamental solutions for the fractional diffusion-wave equation
-
Mainardi F. The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 1996, 9:23-28.
-
(1996)
Appl. Math. Lett.
, vol.9
, pp. 23-28
-
-
Mainardi, F.1
-
10
-
-
0036650850
-
Time fractional diffusion: a discrete random walk approach
-
Gorenflo R., Mainardi F., Moretti D., Paradisi P. Time fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 2002, 29(1-4):129-143.
-
(2002)
Nonlinear Dyn.
, vol.29
, Issue.1-4
, pp. 129-143
-
-
Gorenflo, R.1
Mainardi, F.2
Moretti, D.3
Paradisi, P.4
-
11
-
-
0036650559
-
Solution for a fractional diffusion-wave equation defined in a bounded domain
-
Agrawal O.P. Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dynamics 2002, 29:145-155.
-
(2002)
Nonlinear Dynamics
, vol.29
, pp. 145-155
-
-
Agrawal, O.P.1
-
13
-
-
25444472344
-
An explicit finite difference method and a new Von-Neumann Type stability analysis for fractional diffusion equations
-
Yuste S.B., Acedo L. An explicit finite difference method and a new Von-Neumann Type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 2005, 42:1862-1874.
-
(2005)
SIAM J. Numer. Anal.
, vol.42
, pp. 1862-1874
-
-
Yuste, S.B.1
Acedo, L.2
-
14
-
-
33646128485
-
Weighted average finite difference methods for fractional diffusion equations
-
Yuste S.B. Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 2006, 216:264-274.
-
(2006)
J. Comput. Phys.
, vol.216
, pp. 264-274
-
-
Yuste, S.B.1
-
15
-
-
36149001420
-
A Fourier method for the fractional diffusion equation describing sub-diffusion
-
Chen C.M., Liu F., Turner I., Anh V. A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 2007, 227:886-897.
-
(2007)
J. Comput. Phys.
, vol.227
, pp. 886-897
-
-
Chen, C.M.1
Liu, F.2
Turner, I.3
Anh, V.4
-
16
-
-
17144427014
-
The accuracy and stability of an implicit solution method for the fractional diffusion equation
-
Langlands T.A.M., Henry B.I. The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 2005, 205:719-736.
-
(2005)
J. Comput. Phys.
, vol.205
, pp. 719-736
-
-
Langlands, T.A.M.1
Henry, B.I.2
-
17
-
-
55549107511
-
New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation
-
Zhuang P., Liu F., Anh V., Turner I. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 2008, 46:1079-1095.
-
(2008)
SIAM J. Numer. Anal.
, vol.46
, pp. 1079-1095
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
-
18
-
-
30744474991
-
A fully discrete difference scheme for a diffusion-wave system
-
Sun Z.Z., Wu X.N. A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 2006, 56:193-209.
-
(2006)
Appl. Numer. Math.
, vol.56
, pp. 193-209
-
-
Sun, Z.Z.1
Wu, X.N.2
-
19
-
-
77951184169
-
An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation
-
Gu Y., Zhuang P., Liu F. An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation. Comput. Model. Eng. Sci. 2010, 56(3):303-334.
-
(2010)
Comput. Model. Eng. Sci.
, vol.56
, Issue.3
, pp. 303-334
-
-
Gu, Y.1
Zhuang, P.2
Liu, F.3
-
20
-
-
79251616666
-
-
An implicit RBF meshless approach for time fractional diffusion equations, Comput. Mech., Doi: 10.1007/s00466-011-0573-x.
-
Q. Liu, Y.T. Gu, P. Zhuang, F. Liu, Y.F. Nie, An implicit RBF meshless approach for time fractional diffusion equations, Comput. Mech., Doi: 10.1007/s00466-011-0573-x.
-
-
-
Liu, Q.1
Gu, Y.T.2
Zhuang, P.3
Liu, F.4
Nie, Y.F.5
-
21
-
-
69049086472
-
Compact finite difference method for the fractional diffusion equation
-
Cui M. Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 2009, 228:7792-7804.
-
(2009)
J. Comput. Phys.
, vol.228
, pp. 7792-7804
-
-
Cui, M.1
-
22
-
-
77955704784
-
Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation
-
Chen C.M., Liu F., Anh V., Turner I. Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 2010, 32:1740-1760.
-
(2010)
SIAM J. Sci. Comput.
, vol.32
, pp. 1740-1760
-
-
Chen, C.M.1
Liu, F.2
Anh, V.3
Turner, I.4
-
23
-
-
78649334165
-
A compact difference scheme for the fractional sub-diffusion equations
-
Gao G.H., Sun Z.Z. A compact difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 2011, 230:586-595.
-
(2011)
J. Comput. Phys.
, vol.230
, pp. 586-595
-
-
Gao, G.H.1
Sun, Z.Z.2
-
24
-
-
84907893973
-
Numerical method for the variable-order fractional advection-diffusion equation with a nonlinear source term
-
Zhuang P., Liu F., Anh V., Turner I. Numerical method for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 2009, 47:1760-1781.
-
(2009)
SIAM J. Numer. Anal.
, vol.47
, pp. 1760-1781
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
-
25
-
-
70350134071
-
Stability and convergence of an implicit numerical method for the nonlinear fractional reaction-subdiffusion process
-
Zhuang P., Liu F., Anh V., Turner I. Stability and convergence of an implicit numerical method for the nonlinear fractional reaction-subdiffusion process. IMA J. Appl. Math. 2009, 74:645-667.
-
(2009)
IMA J. Appl. Math.
, vol.74
, pp. 645-667
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
-
26
-
-
77955273871
-
Explicit and implicit finite difference schemes for fractional Cattaneo equation
-
Ghazizadeh H.R., Maerefat M., Azimi A. Explicit and implicit finite difference schemes for fractional Cattaneo equation. J. Comput. Phys. 2010, 229:7042-7057.
-
(2010)
J. Comput. Phys.
, vol.229
, pp. 7042-7057
-
-
Ghazizadeh, H.R.1
Maerefat, M.2
Azimi, A.3
-
27
-
-
34547548712
-
Finite difference/spectral approximations for the time-fractional diffusion equation
-
Lin X., Xu C. Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 2007, 225:1533-1552.
-
(2007)
J. Comput. Phys.
, vol.225
, pp. 1533-1552
-
-
Lin, X.1
Xu, C.2
-
28
-
-
77958536189
-
A space-time spectral method for the time fractional diffusion equation
-
Li X., Xu C. A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 2009, 47:2108-2131.
-
(2009)
SIAM J. Numer. Anal.
, vol.47
, pp. 2108-2131
-
-
Li, X.1
Xu, C.2
-
29
-
-
79955669422
-
-
Finite difference/spectral approximations for the fractional cable equation, Math. Comp. DOI: 10.1090/S0025-5718-2010-02438-X
-
Y. Lin, X. Li, C. Xu, Finite difference/spectral approximations for the fractional cable equation, Math. Comp. DOI: 10.1090/S0025-5718-2010-02438-X.
-
-
-
Lin, Y.1
Li, X.2
Xu, C.3
-
30
-
-
36149001762
-
Numerical algorithm for the time fractional Fokker-Planck equation
-
Deng W. Numerical algorithm for the time fractional Fokker-Planck equation. J. Comput. Phys. 2007, 227:1510-1522.
-
(2007)
J. Comput. Phys.
, vol.227
, pp. 1510-1522
-
-
Deng, W.1
-
31
-
-
59349113701
-
Finite element method for the space and time fractional Fokker0-Planck equation
-
Deng W. Finite element method for the space and time fractional Fokker0-Planck equation. SIAM J. Numer. Anal. 2008, 47:204-226.
-
(2008)
SIAM J. Numer. Anal.
, vol.47
, pp. 204-226
-
-
Deng, W.1
-
32
-
-
77950690888
-
Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation
-
Chen C.M., Liu F., Turner I., Anh V. Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation. Numer. Algor. 2010, 54:1-21.
-
(2010)
Numer. Algor.
, vol.54
, pp. 1-21
-
-
Chen, C.M.1
Liu, F.2
Turner, I.3
Anh, V.4
-
33
-
-
77954142858
-
Numerical simulations of 2D fractional subdiffusion problems
-
Brunner H., Ling L., Yamamoto M. Numerical simulations of 2D fractional subdiffusion problems. J. Comput. Phys. 2010, 229:6613-6622.
-
(2010)
J. Comput. Phys.
, vol.229
, pp. 6613-6622
-
-
Brunner, H.1
Ling, L.2
Yamamoto, M.3
-
34
-
-
80053638646
-
Finite difference approximation for two-dimensional time fractional diffusion equation
-
Zhuang P., Liu F. Finite difference approximation for two-dimensional time fractional diffusion equation. Journal of Algorithms & Computational Technology 2007, 1(1):1-15.
-
(2007)
Journal of Algorithms & Computational Technology
, vol.1
, Issue.1
, pp. 1-15
-
-
Zhuang, P.1
Liu, F.2
-
35
-
-
79956124918
-
A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions
-
Zhao X., Sun Z.Z. A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 2011, 230:6061-6074.
-
(2011)
J. Comput. Phys.
, vol.230
, pp. 6061-6074
-
-
Zhao, X.1
Sun, Z.Z.2
-
37
-
-
0002058827
-
The numerical solution of parabolic and elliptic differential equations
-
Peaceman D.W., Rachford H.H. The numerical solution of parabolic and elliptic differential equations. J. Soc. Indust. Appl. Math. 1955, 3:28-41.
-
(1955)
J. Soc. Indust. Appl. Math.
, vol.3
, pp. 28-41
-
-
Peaceman, D.W.1
Rachford, H.H.2
-
38
-
-
34250949893
-
Alternating direction method for three space variables
-
Douglas J. Alternating direction method for three space variables. Numer. Math. 1961, 4:41-63.
-
(1961)
Numer. Math.
, vol.4
, pp. 41-63
-
-
Douglas, J.1
-
39
-
-
0001742634
-
A general formulation of alternating direction method I Parabolic and hyperbolic problem
-
Douglas J., Gunn J. A general formulation of alternating direction method I Parabolic and hyperbolic problem. Numer. Math. 1964, 6:428-453.
-
(1964)
Numer. Math.
, vol.6
, pp. 428-453
-
-
Douglas, J.1
Gunn, J.2
-
40
-
-
3042753774
-
Difference schemes of second-order accuracy with a splitting operator for parabolic equations without mixed partial derivative
-
(in Russian)
-
D'yakonov E.G. Difference schemes of second-order accuracy with a splitting operator for parabolic equations without mixed partial derivative. Zh. Vychisl. Mat. I Mat. Fiz. 1964, 4:935-941. (in Russian).
-
(1964)
Zh. Vychisl. Mat. I Mat. Fiz.
, vol.4
, pp. 935-941
-
-
D'yakonov, E.G.1
|