메뉴 건너뛰기




Volumn 230, Issue 24, 2011, Pages 8713-8728

Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation

Author keywords

ADI scheme; Convergence; Discrete energy method; Multidimensional fractional differential equation; Stability

Indexed keywords

NUMERICAL METHODS;

EID: 80053633596     PISSN: 00219991     EISSN: 10902716     Source Type: Journal    
DOI: 10.1016/j.jcp.2011.08.020     Document Type: Article
Times cited : (184)

References (43)
  • 3
    • 0040307478 scopus 로고
    • Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications
    • Bouchaud J., Georges A. Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 1990, 195:127-293.
    • (1990) Phys. Rep. , vol.195 , pp. 127-293
    • Bouchaud, J.1    Georges, A.2
  • 4
    • 0002641421 scopus 로고    scopus 로고
    • The random walk's guide to anomalous diffusion: a fractional dynamics approach
    • Metzler R., Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 2000, 339:1-77.
    • (2000) Phys. Rep. , vol.339 , pp. 1-77
    • Metzler, R.1    Klafter, J.2
  • 5
    • 0001691616 scopus 로고
    • Observations of anomalous diffusion and Lévy flights in a 2-dimensional rotating flow
    • Solomon T.H., Weeks E.R., Swinney H.L. Observations of anomalous diffusion and Lévy flights in a 2-dimensional rotating flow. Phys. Rev. Lett. 1993, 71:3975-3979.
    • (1993) Phys. Rev. Lett. , vol.71 , pp. 3975-3979
    • Solomon, T.H.1    Weeks, E.R.2    Swinney, H.L.3
  • 6
    • 0001983732 scopus 로고    scopus 로고
    • Fractional calculus: some numerical methods
    • Springer-Verlag, NewYork, S. Carpinteri, F. Mainardi (Eds.)
    • Gorenflo R. Fractional calculus: some numerical methods. Fractals and Fracional Calculus in Continuum Mechanics 1997, 277-290. Springer-Verlag, NewYork. S. Carpinteri, F. Mainardi (Eds.).
    • (1997) Fractals and Fracional Calculus in Continuum Mechanics , pp. 277-290
    • Gorenflo, R.1
  • 7
    • 0009481303 scopus 로고
    • Fractional diffusion equation
    • Wyss W. Fractional diffusion equation. J. Math. Phys. 1986, 27:2782-2785.
    • (1986) J. Math. Phys. , vol.27 , pp. 2782-2785
    • Wyss, W.1
  • 8
    • 0001553919 scopus 로고
    • Fractional diffusion and wave equations
    • Schneider W.R., Wyss W. Fractional diffusion and wave equations. J. Math. Phys. 1989, 30:134-144.
    • (1989) J. Math. Phys. , vol.30 , pp. 134-144
    • Schneider, W.R.1    Wyss, W.2
  • 9
    • 30244460855 scopus 로고    scopus 로고
    • The fundamental solutions for the fractional diffusion-wave equation
    • Mainardi F. The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 1996, 9:23-28.
    • (1996) Appl. Math. Lett. , vol.9 , pp. 23-28
    • Mainardi, F.1
  • 10
    • 0036650850 scopus 로고    scopus 로고
    • Time fractional diffusion: a discrete random walk approach
    • Gorenflo R., Mainardi F., Moretti D., Paradisi P. Time fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 2002, 29(1-4):129-143.
    • (2002) Nonlinear Dyn. , vol.29 , Issue.1-4 , pp. 129-143
    • Gorenflo, R.1    Mainardi, F.2    Moretti, D.3    Paradisi, P.4
  • 11
    • 0036650559 scopus 로고    scopus 로고
    • Solution for a fractional diffusion-wave equation defined in a bounded domain
    • Agrawal O.P. Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dynamics 2002, 29:145-155.
    • (2002) Nonlinear Dynamics , vol.29 , pp. 145-155
    • Agrawal, O.P.1
  • 13
    • 25444472344 scopus 로고    scopus 로고
    • An explicit finite difference method and a new Von-Neumann Type stability analysis for fractional diffusion equations
    • Yuste S.B., Acedo L. An explicit finite difference method and a new Von-Neumann Type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 2005, 42:1862-1874.
    • (2005) SIAM J. Numer. Anal. , vol.42 , pp. 1862-1874
    • Yuste, S.B.1    Acedo, L.2
  • 14
    • 33646128485 scopus 로고    scopus 로고
    • Weighted average finite difference methods for fractional diffusion equations
    • Yuste S.B. Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 2006, 216:264-274.
    • (2006) J. Comput. Phys. , vol.216 , pp. 264-274
    • Yuste, S.B.1
  • 15
    • 36149001420 scopus 로고    scopus 로고
    • A Fourier method for the fractional diffusion equation describing sub-diffusion
    • Chen C.M., Liu F., Turner I., Anh V. A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 2007, 227:886-897.
    • (2007) J. Comput. Phys. , vol.227 , pp. 886-897
    • Chen, C.M.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 16
    • 17144427014 scopus 로고    scopus 로고
    • The accuracy and stability of an implicit solution method for the fractional diffusion equation
    • Langlands T.A.M., Henry B.I. The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 2005, 205:719-736.
    • (2005) J. Comput. Phys. , vol.205 , pp. 719-736
    • Langlands, T.A.M.1    Henry, B.I.2
  • 17
    • 55549107511 scopus 로고    scopus 로고
    • New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation
    • Zhuang P., Liu F., Anh V., Turner I. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 2008, 46:1079-1095.
    • (2008) SIAM J. Numer. Anal. , vol.46 , pp. 1079-1095
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 18
    • 30744474991 scopus 로고    scopus 로고
    • A fully discrete difference scheme for a diffusion-wave system
    • Sun Z.Z., Wu X.N. A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 2006, 56:193-209.
    • (2006) Appl. Numer. Math. , vol.56 , pp. 193-209
    • Sun, Z.Z.1    Wu, X.N.2
  • 19
    • 77951184169 scopus 로고    scopus 로고
    • An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation
    • Gu Y., Zhuang P., Liu F. An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation. Comput. Model. Eng. Sci. 2010, 56(3):303-334.
    • (2010) Comput. Model. Eng. Sci. , vol.56 , Issue.3 , pp. 303-334
    • Gu, Y.1    Zhuang, P.2    Liu, F.3
  • 20
    • 79251616666 scopus 로고    scopus 로고
    • An implicit RBF meshless approach for time fractional diffusion equations, Comput. Mech., Doi: 10.1007/s00466-011-0573-x.
    • Q. Liu, Y.T. Gu, P. Zhuang, F. Liu, Y.F. Nie, An implicit RBF meshless approach for time fractional diffusion equations, Comput. Mech., Doi: 10.1007/s00466-011-0573-x.
    • Liu, Q.1    Gu, Y.T.2    Zhuang, P.3    Liu, F.4    Nie, Y.F.5
  • 21
    • 69049086472 scopus 로고    scopus 로고
    • Compact finite difference method for the fractional diffusion equation
    • Cui M. Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 2009, 228:7792-7804.
    • (2009) J. Comput. Phys. , vol.228 , pp. 7792-7804
    • Cui, M.1
  • 22
    • 77955704784 scopus 로고    scopus 로고
    • Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation
    • Chen C.M., Liu F., Anh V., Turner I. Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 2010, 32:1740-1760.
    • (2010) SIAM J. Sci. Comput. , vol.32 , pp. 1740-1760
    • Chen, C.M.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 23
    • 78649334165 scopus 로고    scopus 로고
    • A compact difference scheme for the fractional sub-diffusion equations
    • Gao G.H., Sun Z.Z. A compact difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 2011, 230:586-595.
    • (2011) J. Comput. Phys. , vol.230 , pp. 586-595
    • Gao, G.H.1    Sun, Z.Z.2
  • 24
    • 84907893973 scopus 로고    scopus 로고
    • Numerical method for the variable-order fractional advection-diffusion equation with a nonlinear source term
    • Zhuang P., Liu F., Anh V., Turner I. Numerical method for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 2009, 47:1760-1781.
    • (2009) SIAM J. Numer. Anal. , vol.47 , pp. 1760-1781
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 25
    • 70350134071 scopus 로고    scopus 로고
    • Stability and convergence of an implicit numerical method for the nonlinear fractional reaction-subdiffusion process
    • Zhuang P., Liu F., Anh V., Turner I. Stability and convergence of an implicit numerical method for the nonlinear fractional reaction-subdiffusion process. IMA J. Appl. Math. 2009, 74:645-667.
    • (2009) IMA J. Appl. Math. , vol.74 , pp. 645-667
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 26
    • 77955273871 scopus 로고    scopus 로고
    • Explicit and implicit finite difference schemes for fractional Cattaneo equation
    • Ghazizadeh H.R., Maerefat M., Azimi A. Explicit and implicit finite difference schemes for fractional Cattaneo equation. J. Comput. Phys. 2010, 229:7042-7057.
    • (2010) J. Comput. Phys. , vol.229 , pp. 7042-7057
    • Ghazizadeh, H.R.1    Maerefat, M.2    Azimi, A.3
  • 27
    • 34547548712 scopus 로고    scopus 로고
    • Finite difference/spectral approximations for the time-fractional diffusion equation
    • Lin X., Xu C. Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 2007, 225:1533-1552.
    • (2007) J. Comput. Phys. , vol.225 , pp. 1533-1552
    • Lin, X.1    Xu, C.2
  • 28
    • 77958536189 scopus 로고    scopus 로고
    • A space-time spectral method for the time fractional diffusion equation
    • Li X., Xu C. A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 2009, 47:2108-2131.
    • (2009) SIAM J. Numer. Anal. , vol.47 , pp. 2108-2131
    • Li, X.1    Xu, C.2
  • 29
    • 79955669422 scopus 로고    scopus 로고
    • Finite difference/spectral approximations for the fractional cable equation, Math. Comp. DOI: 10.1090/S0025-5718-2010-02438-X
    • Y. Lin, X. Li, C. Xu, Finite difference/spectral approximations for the fractional cable equation, Math. Comp. DOI: 10.1090/S0025-5718-2010-02438-X.
    • Lin, Y.1    Li, X.2    Xu, C.3
  • 30
    • 36149001762 scopus 로고    scopus 로고
    • Numerical algorithm for the time fractional Fokker-Planck equation
    • Deng W. Numerical algorithm for the time fractional Fokker-Planck equation. J. Comput. Phys. 2007, 227:1510-1522.
    • (2007) J. Comput. Phys. , vol.227 , pp. 1510-1522
    • Deng, W.1
  • 31
    • 59349113701 scopus 로고    scopus 로고
    • Finite element method for the space and time fractional Fokker0-Planck equation
    • Deng W. Finite element method for the space and time fractional Fokker0-Planck equation. SIAM J. Numer. Anal. 2008, 47:204-226.
    • (2008) SIAM J. Numer. Anal. , vol.47 , pp. 204-226
    • Deng, W.1
  • 32
    • 77950690888 scopus 로고    scopus 로고
    • Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation
    • Chen C.M., Liu F., Turner I., Anh V. Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation. Numer. Algor. 2010, 54:1-21.
    • (2010) Numer. Algor. , vol.54 , pp. 1-21
    • Chen, C.M.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 33
    • 77954142858 scopus 로고    scopus 로고
    • Numerical simulations of 2D fractional subdiffusion problems
    • Brunner H., Ling L., Yamamoto M. Numerical simulations of 2D fractional subdiffusion problems. J. Comput. Phys. 2010, 229:6613-6622.
    • (2010) J. Comput. Phys. , vol.229 , pp. 6613-6622
    • Brunner, H.1    Ling, L.2    Yamamoto, M.3
  • 34
    • 80053638646 scopus 로고    scopus 로고
    • Finite difference approximation for two-dimensional time fractional diffusion equation
    • Zhuang P., Liu F. Finite difference approximation for two-dimensional time fractional diffusion equation. Journal of Algorithms & Computational Technology 2007, 1(1):1-15.
    • (2007) Journal of Algorithms & Computational Technology , vol.1 , Issue.1 , pp. 1-15
    • Zhuang, P.1    Liu, F.2
  • 35
    • 79956124918 scopus 로고    scopus 로고
    • A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions
    • Zhao X., Sun Z.Z. A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 2011, 230:6061-6074.
    • (2011) J. Comput. Phys. , vol.230 , pp. 6061-6074
    • Zhao, X.1    Sun, Z.Z.2
  • 37
    • 0002058827 scopus 로고
    • The numerical solution of parabolic and elliptic differential equations
    • Peaceman D.W., Rachford H.H. The numerical solution of parabolic and elliptic differential equations. J. Soc. Indust. Appl. Math. 1955, 3:28-41.
    • (1955) J. Soc. Indust. Appl. Math. , vol.3 , pp. 28-41
    • Peaceman, D.W.1    Rachford, H.H.2
  • 38
    • 34250949893 scopus 로고
    • Alternating direction method for three space variables
    • Douglas J. Alternating direction method for three space variables. Numer. Math. 1961, 4:41-63.
    • (1961) Numer. Math. , vol.4 , pp. 41-63
    • Douglas, J.1
  • 39
    • 0001742634 scopus 로고
    • A general formulation of alternating direction method I Parabolic and hyperbolic problem
    • Douglas J., Gunn J. A general formulation of alternating direction method I Parabolic and hyperbolic problem. Numer. Math. 1964, 6:428-453.
    • (1964) Numer. Math. , vol.6 , pp. 428-453
    • Douglas, J.1    Gunn, J.2
  • 40
    • 3042753774 scopus 로고
    • Difference schemes of second-order accuracy with a splitting operator for parabolic equations without mixed partial derivative
    • (in Russian)
    • D'yakonov E.G. Difference schemes of second-order accuracy with a splitting operator for parabolic equations without mixed partial derivative. Zh. Vychisl. Mat. I Mat. Fiz. 1964, 4:935-941. (in Russian).
    • (1964) Zh. Vychisl. Mat. I Mat. Fiz. , vol.4 , pp. 935-941
    • D'yakonov, E.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.